Вестник УГАМУ

МАШИНОСТРОЕНИЕ • ГИДРАВЛИЧЕСКИЕ МАШИНЫ, ГИДРОПНЕВМОАГРЕГАТЫ

УДК 621.6

А. Г. ХАКИМОВ, М. М. ШАКИРЬЯНОВ

ПРОСТРАНСТВЕННЫЕ КОЛЕБАНИЯ ТРУБОПРОВОДА ПОД ДЕЙСТВИЕМ ПЕРЕМЕННОГО ВНУТРЕННЕГО ДАВЛЕНИЯ

Исследуются пространственные колебания изогнутого собственным весом трубопровода, находящегося под действием переменного внутреннего давления. Пространственные колебания; собственный вес; трубопровод; переменное внутреннее давление

Подача топлива из топливных баков летательного аппарата в камеру сгорания двигателя осуществляется через разветвленную сеть трубопроводов, которые на отдельных участках изначально изогнуты и под действием переменного внутреннего давления могут совершать пространственные колебания. Такие же колебания трубопровода могут иметь место при заправке летательного аппарата на земле и в воздухе. При определенных соотношениях между параметрами колебания трубопровода могут усиливаться или затухать, поэтому задача изучения пространственных колебаний трубопровода является актуальной проблемой и имеет практический интерес.

1. СОСТОЯНИЕ ВОПРОСА

Общая постановка задачи о пространственных колебаниях трубопровода приведена в монографии [1]. В статической постановке влияние внутреннего давления в трубопроводе на его изгибные деформации изучено в работе [2]. Поперечные колебания трубы под действием бегущих волн в жидкости рассмотрены в статье [3]. Исследованию нелинейных свободных пространственных колебаний статически изогнутого трубопровода с рабочей средой посвящена статья [4]. В настоящей работе рассматриваются пространственные изгибно-вращательные колебания трубопровода с учетом влияния переменного внутреннего давления в трубопроводе на его изгибные деформации.

2. ПОСТАНОВКА ЗАДАЧИ

Рассматриваются пространственные колебания трубопровода и заключенной в нем несжимаемой жидкости относительно горизонтальной оси Dx (рис. 1), проходящей через опо-

Контактная информация: (347) 273-07-27

ры. В статическом состоянии трубопровод изогнут собственным весом и находится под действием внутреннего давления. Предполагается, что трубопровод выводится из этого состояния путем его отклонения на угол θ от вертикальной плоскости. Коэффициент упругости опор и деформации трубопровода, связанные с его выходом из плоскости изгиба, считаются малыми, поэтому изогнутая ось трубопровода является плоской кривой. Длина трубопровода равна *L*, толщина его стенки – *h*, а суммарная масса однородного трубопровода и жидкости – *m*. В данной постановке задачи будем пренебрегать продольными силами инерции по сравнению с поперечными.

На рис. 1 слева изображен элемент трубопровода длиной dx и массой dm = (m / L) dx, а справа на этом же рисунке показаны ускорения и силы, действующие на выделенный элемент трубопровода.

Поперечная распределенная нагрузка *q_n* на трубопровод выражается формулой:

$$q_{n} = \frac{m}{L} (g \cos \theta - \frac{\partial^{2} w}{\partial t^{2}}) + P_{i} F_{i} \frac{\partial^{2} w}{\partial x^{2}}, F_{i} = \pi R_{i}^{2},$$
(1)
$$P_{i} = P_{0} + P_{a} \sin \left(\Omega t + \varphi\right),$$

где w – прогиб элемента трубопровода, Ω , φ , P_0 и P_a – значения круговой частоты, начальной фазы, статической и амплитуды динамической составляющих переменного внутреннего давления P_i в трубопроводе, R_i , F_i – внутренний радиус и площадь проходного сечения трубопровода, t – время.

Касательное a_{τ} к траектории, нормальное a_n и кориолисово a_k ускорения выделенного элемента трубопровода равны

$$a_{\tau} = w \frac{d^2 \theta}{dt^2}, \ a_n = w \left(\frac{d \theta}{dt}\right)^2, \ a_k = 2 \frac{d \theta}{dt} \frac{\partial w}{\partial t}.$$

Таким образом, силы инерции $d\Phi_{t}$, $d\Phi_{n}$ и $d\Phi_{k}$ выделенного элемента трубопровода запишутся

$$d\Phi_{\tau} = dm \cdot w \frac{d^2 \theta}{dt^2},$$

$$d\Phi_n = dm \cdot w \left(\frac{d\theta}{dt}\right)^2, \ d\Phi_k = 2dm \frac{d\theta}{dt} \frac{\partial w}{\partial t}.$$
(2)

3. МЕТОДИКА ИССЛЕДОВАНИЯ

Уравнение условного равновесия трубопровода в виде суммы моментов всех приложенных сил и сил инерции относительно оси Dxимеет вид (рис. 1)

$$-\int_{(m)} gw\sin\theta dm - \int_{(m)} wd\Phi_{\tau} - \int_{(m)} wd\Phi_{k} - M_{c} = 0, \quad (3)$$

где *g* – гравитационное ускорение. Суммарный момент сил сопротивления *M_c* трубопровода прямо пропорционален первой степени угловой скорости:

$$M_c = \mu_1 \frac{d\theta}{dt},\tag{4}$$

где µ₁ – коэффициент сопротивления вращению всего трубопровода.

Рис. 1. Расчетная схема трубопровода

Уравнение (3) с учетом равенств (2) и (4) примет вид

$$-\frac{m}{L}g\sin\theta\int_{0}^{L}wdx - \frac{m}{L}\frac{d^{2}\theta}{dt^{2}}\int_{0}^{L}w^{2}dx - \frac{2m}{L}\frac{d\theta}{dt}\int_{0}^{L}w\frac{\partial w}{\partial t}dx - \mu_{1}\frac{d\theta}{dt} = 0.$$
(5)

Сила *Т* продольного натяжения трубопровода определяется интегралом

$$T = \frac{EF}{2L} \int_{0}^{L} \left(\frac{\partial w}{\partial x}\right)^{2} dx, \qquad (6)$$

где *E* и *F* = $2\pi R_i h$ – модуль Юнга материала и площадь поперечного сечения трубопровода.

Дифференциальное уравнение изгибных колебаний трубопровода в своей плоскости следующее

$$\frac{\partial^2 w}{\partial t^2} = -\frac{EJL}{m} \frac{\partial^4 w}{\partial x^4} + \frac{(T - P_i F_i)L}{m} \frac{\partial^2 w}{\partial x^2} + g\cos\theta + w \left(\frac{d\theta}{dt}\right)^2 - \frac{\mu_2 L}{m} \frac{\partial w}{\partial t},$$
(7)

где μ_2 – коэффициент сопротивления движению элемента трубопровода в плоскости изгиба, $J \cong \pi R_i^3 h$ – осевой момент инерции площади поперечного сечения трубопровода.

Функцию прогиба трубопровода, удовлетворяющую граничным условиям

$$w(0,t) = w(L,t) = \frac{d^2 w}{dx^2} (0,t) = \frac{d^2 w}{dx^2} (L,t) = 0,$$

примем в виде

$$w(x,t) = \left[W_0 + w_0(t)\right] \sin \frac{\pi x}{L}, \qquad (8)$$

где W_0 и $w_0(t)$ – амплитуды статической и динамической составляющих прогиба.

Подставляя функцию (8) в уравнения (5) и (7) и применяя к последнему процедуру Бубнова – Галеркина [5], после несложных преобразований получим

$$\frac{1}{2} \frac{d^{2}\theta}{dt^{2}} \Big[W_{0} + w_{0}(t) \Big]^{2} + \frac{\mu_{1}}{m} \frac{d\theta}{dt} + \\ + \Big[W_{0} + w_{0}(t) \Big] \Big(\frac{2g}{\pi} \sin \theta + \frac{d\theta}{dt} \frac{dw_{0}}{dt} \Big) = 0, \\ \frac{d^{2}w_{0}}{dt^{2}} + \frac{\mu_{2}L}{m} \frac{dw_{0}}{dt} + \frac{\pi^{4}EJ}{mL^{3}} \Big[W_{0} + w_{0}(t) \Big] = \\ = \frac{4g}{\pi} \cos \theta + \Big[W_{0} + w_{0}(t) \Big] \Big(\frac{d\theta}{dt} \Big)^{2} - \\ - \Big\{ \frac{\pi^{2}EF}{4L^{2}} \Big[W_{0} + w_{0}(t) \Big]^{2} - F_{i} \big(P_{0} + P_{a} \sin \Omega t \big) \Big\} \times \\ \times \frac{\pi^{2}}{mL} \Big[W_{0} + w_{0}(t) \Big].$$
(9)

Полагая в последнем уравнении $\theta(t) \equiv 0$, $w_0(t) \equiv 0$, $P_a = 0$, получим следующее алгебраическое уравнение для определения статической составляющей W_0 прогиба трубопровода

$$\frac{\pi^4 EF}{4L^2} W_0^3 + \pi^2 \left(\frac{\pi^2 EJ}{L^2} - F_i P_0\right) W_0 - \frac{4 gmL}{\pi} = 0$$

Система уравнений (9) решается при следующих начальных условиях

$$t=0, \ \theta=\theta_0, \ \frac{d\theta}{dt}=\omega_0, \ w_0=0, \ \frac{dw_0}{dt}=0.$$
 (10)

Здесь θ_0 , ω_0 – начальные угол поворота и угловая скорость отклонения трубопровода от вертикальной плоскости.

4. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Численное решение задачи Коши (9), (10) определялось методом Рунге-Кутта. Результаты вычислений, полученные для следующих числовых значений основных параметров: *m* = = 0,811 кг, L = 2,5 м, g = 9,8 м/с², $R_i = 0,005$ м, h = 0,001 м, $\theta_0 = 0,3$ рад, $E = 2,0.10^{11}$ Па, $P_a =$ = 2 бара, $\omega_0 = 0$ рад/с, $\phi = 0$, представлены в виде графиков. На рис. 2-17 приведены графики зависимости угла θ в радианах и динамического прогиба w_0 в метрах от времени t, соответственно. Результаты численного интегрирования учетом сил сопротивления изображены С сплошными линиями, а штриховыми - без учета этих сил. Графики построены для двух комплектов значений коэффициентов µ1 и µ2 сопротивлений: $\mu_1 = 2 \cdot 10^{-7}$ Нмс/рад, $\mu_2 = 2 \cdot 10^{-3}$ Нс/м² и $\mu_1 = 2.10^{-5}$ Нмс/рад, $\mu_2 = 2.10^{-1}$ Нс/м², двух величин статической составляющей давления P_0 : $P_0 = 10$ бар и $P_0 = 20$ бар и трех значений круговой частоты Ω : Ω = 28,5 рад/с, Ω = = 64,7 рад/с и Ω = 70,0 рад/с.

Из рис. 2-5 видно, что в обоих случаях: $P_0 = 10$ бар (рис. 2 и 3) и $P_0 = 20$ бар (рис. 4 и 5) при относительно небольших значениях коэффициентов μ_1 и μ_2 ($\mu_1 = 2.10^{-7}$ Нмс/рад, $\mu_2 =$ $= 2 \cdot 10^{-3}$ Hc/m²) сопротивлений, значении круговой частоты $\Omega = 28,5$ рад/с сплошная и штриховая кривые практически сливаются. Кроме того, при принятых значениях параметров наблюдается явление биений как по вращательным, так и по изгибным колебаниям. Также можно видеть (рис. 4), что с увеличением статической составляющей давления биения по вращательным колебаниям сглаживаются, а по изгибным колебаниям они остаются четко выраженными (рис. 5) и происходят с большей частотой.

Рис. 2. Зависимость угла θ поворота трубопровода от времени *t* при $\mu_1 = 2 \cdot 10^{-7}$ Нмс/рад, $\mu_2 = 2 \cdot 10^{-3}$ Нс/м², $\Omega = 28,5$ рад/с и $P_0 = 10$ бар

Рис. 3. Зависимость прогиба w_0 средней точки пролета трубопровода от времени *t* при $\mu_1 = 2 \cdot 10^{-7}$ Нмс/рад, $\mu_2 = 2 \cdot 10^{-3}$ Нс/м², $\Omega = 28,5$ рад/с и $P_0 = 10$ бар

Рис. 4. Зависимость угла θ поворота трубопровода от времени *t* при $\mu_1 = 2 \cdot 10^{.7}$ Нмс/рад, $\mu_2 = 2 \cdot 10^{.3}$ Нс/м², $\Omega = 28,5$ рад/с и $P_0 = 20$ бар

Как и следовало ожидать, с увеличением сил сопротивления ($\mu_1 = 2 \cdot 10^{-5}$ Нмс/рад, $\mu_2 = 2 \cdot 10^{-1}$ Нс/м²) разница между соответствующими максимальными значениями углов θ и прогибов w_0 становится значительной (рис. 6–11).

Представляется также важным вопрос о влиянии круговой частоты Ω динамической составляющей переменного внутреннего давления на колебания трубопровода. Это обстоятельство представлено графиками на рис. 6–11.

Рис. 5. Зависимость прогиба w_0 средней точки пролета трубопровода от времени *t* при $\mu_1 = 2 \cdot 10^{-7}$ Нмс/рад, $\mu_2 = 2 \cdot 10^{-3}$ Нс/м², $\Omega = 28,5$ рад/с и $P_0 = 20$ бар

Рис. 6. Зависимость угла θ поворота трубопровода от времени *t* при $\mu_1 = 2 \cdot 10^{-5}$ Нмс/рад, $\mu_2 = 2 \cdot 10^{-1}$ Нс/м², $\Omega = 28,5$ рад/с и $P_0 = 20$ бар

Рис. 7. Зависимость прогиба w_0 средней точки пролета трубопровода от времени tпри $\mu_1 = 2 \cdot 10^{-5}$ Нмс/рад, $\mu_2 = 2 \cdot 10^{-1}$ Нс/м², $\Omega = 28,5$ рад/с и $P_0 = 20$ бар

Рис. 8. Зависимость угла θ поворота трубопровода от времени *t* при $\mu_1 = 2 \cdot 10^{-5}$ Нмс/рад, $\mu_2 = 2 \cdot 10^{-1}$ Нс/м², $\Omega = 64,7$ рад/с и $P_0 = 20$ бар

Рис. 9. Зависимость прогиба w_0 средней точки пролета трубопровода от времени *t* при $\mu_1 = 2 \cdot 10^{-5}$ Нмс/рад, $\mu_2 = 2 \cdot 10^{-1}$ Нс/м², $\Omega = 64,7$ рад/с и $P_0 = 20$ бар

Рис. 10. Зависимость угла θ поворота трубопровода от времени *t* при $\mu_1 = 2 \cdot 10^{-5}$ Нмс/рад, $\mu_2 = 2 \cdot 10^{-1}$ Нс/м², $\Omega = 70,0$ рад/с и $P_0 = 20$ бар

Рис. 11. Зависимость прогиба w_0 средней точки пролета трубопровода от времени tпри $\mu_1 = 2 \cdot 10^{-5}$ Нмс/рад, $\mu_2 = 2 \cdot 10^{-1}$ Нс/м², $\Omega = 70,0$ рад/с и $P_0 = 20$ бар

Рис. 12. Зависимость угла θ поворота трубопровода от времени *t* при $\mu_1 = 2 \cdot 10^{-5}$ Нмс/рад, $\mu_2 = 2 \cdot 10^{-1}$ Нс/м², $\Omega = 64,7$ рад/с, $P_0 = 20$ бар, $P_a = 2$ бара и $\varphi = 0$

Рис. 13. Зависимость прогиба w_0 средней точки пролета трубопровода от времени *t* при $\mu_1 = 2 \cdot 10^{-5}$ Нмс/рад, $\mu_2 = 2 \cdot 10^{-1}$ Нс/м², $\Omega = 64,7$ рад/с, $P_0 = 20$ бар, $P_a = 2$ бара и $\varphi = 0$

Рис. 14. Зависимость угла θ поворота трубопровода от времени *t* при $\mu_1 = 2 \cdot 10^{-5}$ Нмс/рад, $\mu_2 = 2 \cdot 10^{-1}$ Нс/м², $\Omega = 64,7$ рад/с, $P_0 = 20$ бар, $P_a = 2$ бара и $\varphi = \pi/2$

Рис. 15. Зависимость прогиба w_0 средней точки пролета трубопровода от времени tпри $\mu_1 = 2 \cdot 10^{-5}$ Нмс/рад, $\mu_2 = 2 \cdot 10^{-1}$ Нс/м², $\Omega = 64,7$ рад/с, $P_0 = 20$ бар, $P_a = 2$ бара и $\varphi = \pi/2$

Рис. 16. Зависимость угла θ поворота трубопровода от времени *t* при $\mu_1 = 2 \cdot 10^{-5}$ Нмс/рад, $\mu_2 = 2 \cdot 10^{-1}$ Нс/м², $\Omega = 64,7$ рад/с, $P_0 = 20$ бар, $P_a = 2$ бара и $\varphi = \pi$

Из этих рисунков видно, что при околорезонансном режиме работы трубопровода ($\Omega = 64,7$ рад/с – рис. 8 и 9) амплитуды вращательных и изгибных колебаний могут быть значительными по сравнению с тем, что имеет место при дорезонансном ($\Omega = 28,5$ рад/с – рис. 6 и 7) и зарезонансном ($\Omega = 70,0$ рад/с – рис. 10 и 11) режимах работы.

Рис. 17. Зависимость прогиба w_0 средней точки пролета трубопровода от времени tпри $\mu_1 = 2 \cdot 10^{-5}$ Нмс/рад, $\mu_2 = 2 \cdot 10^{-1}$ Нс/м², $\Omega = 64,7$ рад/с, $P_0 = 20$ бар, $P_a = 2$ бара и $\varphi = \pi$

Влияние начальной фазы ф динамической части внутреннего давления Р_i на колебательные движения трубопровода представлено графиками на рис. 12-17, построенными для трех случаев: $\phi = 0$ – рис. 12, 13, $\phi = \pi/2$ – рис. 14, 15, $\phi = \pi$ – рис. 16, 17. На каждом из этих рисунков для наглядности точками нанесена кривая изменения динамической части внутреннего давления с амплитудой $P_a = 2$ бара и круговой частотой Ω = 64,7 рад/с. Из сравнения соответствующих графиков можно видеть, что при принятых выше параметрах с увеличением значений начальной фазы ф с течением времени происходит уменьшение амплитуд угла в поворота (рис. 12, 14, 16) и одновременное увеличение амплитуд изгибных перемещений w₀ (рис. 13, 15, 17) трубопровода.

Авторы выражают благодарность М. А. Ильгамову за постановку задачи и помощь в выполнении работы.

5. ПРИЛОЖЕНИЕ РЕЗУЛЬТАТОВ

Результаты настоящего исследования могут найти применение при проектировании трубопроводных систем в авиационной и ракетнокосмической технике.

выводы

1. При принятых значениях основных параметров наблюдаются биения как по вращательным, так и по изгибным колебаниям.

2. С ростом статической составляющей давления P_0 биения по вращательным колебаниям сглаживаются, а по изгибным колебаниям они остаются четко выраженными и происходят с большей частотой.

3. С увеличением сил сопротивления разница между соответствующими максимальными значениями углов поворота θ и прогибов w₀ становится значительной. 4. В околорезонансном режиме работы трубопровода его амплитуды вращательных и изгибных колебаний значительно больше по сравнению с теми, что имеют место в дорезонансном и зарезонансном режимах.

5. С увеличением значений начальной фазы φ с течением времени происходит уменьшение амплитуд угла θ поворота и одновременное увеличение амплитуд изгибных перемещений w_0 трубопровода.

6. Построенная математическая модель колебательных движений предварительно изогнутого собственным весом трубопровода при действии переменного внутреннего давления и полученные на основе этой модели уравнения и результаты вычислений позволяют провести оценку напряженно-деформированного состояния трубопровода.

СПИСОК ЛИТЕРАТУРЫ

1. Светлицкий В. А. Механика трубопроводов и шлангов. М.: Машиностроение, 1982. 280 с.

2. Ильгамов М. А. Статические задачи гидроупругости. Казань. ИММ РАН, 1994. 208 с.

3. Ильгамов М. А., Мишин В. Н. Поперечные колебания трубы под действием бегущих волн в жидкости // Изв. Академии наук. Механика твердого тела. 1997. № 1. С. 181–192.

4. Шакирьянов М. М. Пространственные колебания статически изогнутого трубопровода // Труды института механики УНЦ РАН. Вып. 5. Уфа: Гилем, 2007. С. 335–339.

5. Вольмир А. С. Устойчивость деформируемых систем. М.: Наука, 1967. 954 с.

ОБ АВТОРАХ

Хакимов Аким Гайфуллинович, ст. науч. сотр. лаб. механики твердого тела Ин-та механики УНЦ РАН. Дипл. инж.-механик (УАИ, 1970). Канд. физ.-мат. наук по механике жидк., газа и плазмы (Казанск. гос. ун-т, 1977). Иссл. в обл. динамики взаимодействия упругих и упругопластическ. тел со средой.

Шакирьянов Марат Масгутьянович, доц. каф. теор. механики. Дипл. инж.-мех. (УАИ, 1969). Канд. физ.-мат. наук по механике твердого деформируемого тела (Казанск. гос. ун-т, 1978). Иссл. в обл. динамики взаимодействия упругих тел со средой.