Вестник УГАМД

МАШИНОСТРОЕНИЕ • ДИНАМИКА, ПРОЧНОСТЬ МАШИН, ПРИБОРОВ И АППАРАТУРЫ

УДК 539.374.519.8

Ю.С. ПЕРВУШИН

ВЛИЯНИЕ НЕСБАЛАНСИРОВАННОСТИ СТРУКТУРЫ СЛОИСТЫХ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ НА НАПРЯЖЕННО-ДЕФОРМИРОВАННОЕ СОСТОЯНИЕ СТЕРЖНЕВЫХ ЭЛЕМЕНТОВ

Рассматривается влияние несбалансированности структуры слоистого композита на основе стекловолокон и эпоксидной матрицы на напряженно-деформированное состояние пятислойного стержня при растяжении. Представлены результаты численных расчетов напряженного состояния в слоях и деформированного состояния стержня при несбалансированности, вызванной отклонением углов укладки слоев. *Композит; слой; напряжение; деформация*

1. ПОСТАНОВКА ЗАДАЧИ

Вследствие несовершенства технологического характера, воздействия влажности, температуры и других факторов происходит несимметричное относительно срединной поверхности композиционного материала (КМ) изменение физико-механических характеристик слоев, что приводит к нарушению сбалансированности структуры слоистого композиционного материала. В результате этого изменяются деформации, кривизны изгиба и кручения; изменяется поле внутренних напряжений в слоях.

В связи с тем, что слоистые композитные конструкции в большинстве своем являются тонкостенными, напряженное состояние элементов конструкций с инженерной точностью можно считать плоским.

Рассматривается элемент из несбалансированного слоистого композиционного материала, состоящего из произвольного числа слоев и удовлетворяющий следующим предпосылкам [1, 2]:

• композиционный материал имеет одну срединную плоскость, параллельную плоскости укладки слоев, относительно которой деформативные свойства слоев несимметричны; в каждом слое имеется одна плоскость упругой симметрии, параллельная срединной плоскости;

• в плоскости укладки слоев главные направления упругости каждого слоя ориентированы произвольно, слои деформируются в соответствии с обобщенным законом Гука;

Контактная информация: (347) 273-05-23

 адгезионная связь слоев абсолютная и они деформируются без скольжения;

• выполняется гипотеза Кирхгофа о прямых недеформируемых нормалях.

2. РАСЧЕТНЫЕ ЗАВИСИМОСТИ

Перейдем к установлению зависимостей между деформациями и напряжениями, кривизнами изгиба и кручения и соответствующими моментами для многослойного несбалансированного элемента в декартовой системе координат.

Рассмотрим элемент в виде параллелепипеда с размерами, указанными на рис. 1.

Рис. 1. Параллелепипед слоистого КМ со схемой усредненных напряжений и моментов

Начало отсчета системы координат совпадает с центром срединной плоскости параллелепипеда.

Заменим эпюры напряжений статически эквивалентной системой усредненных напряжений σ_1 , σ_2 , σ_6 , изгибающих моментов M_1 , M_2 и крутящего момента M_6 .

Составим уравнения равновесия в виде

$$bh\sigma_1 = b \int_{-\frac{h}{2}}^{\frac{n}{2}} \sigma_1^{(i)}(z) dz, \qquad (1)$$

где σ_1 – усредненное напряжение вдоль оси X_1 ; $\sigma^i_1(z)$ – напряжение вдоль оси X_1 в *i*-м слое, зависящем от координаты *z*.

Из уравнения (1) следует, что

$$\sigma_1 = \frac{1}{h} \frac{\int_{-\frac{h}{2}}^{\frac{h}{2}} \sigma_1^{(i)}(z) dz.$$
 (2)

Аналогичные выражения получим для усредненных напряжений σ_2 и σ_6 :

$$\sigma_{2} = \frac{1}{h} \frac{\int_{-\frac{h}{2}}^{\frac{h}{2}} \sigma_{2}^{(i)}(z) dz,}{\int_{-\frac{h}{2}}^{\frac{h}{2}} \sigma_{6}^{(i)}(z) dz.}$$

Для учета неоднородного напряженного состояния элемента к срединной плоскости приложены моменты, величины которых определяются по формулам:

• усредненный момент изгиба вдоль оси X₁

$$M_{1} = b \int_{\frac{h}{2}}^{\frac{h}{2}} \sigma_{1}^{(i)} z \, dz; \qquad (3)$$

• подобные выражения получим для моментов M_2 и M_6 :

$$M_{2} = b \int_{-\frac{h}{2}}^{\frac{h}{2}} \sigma_{2}^{(i)} z \, dz, M_{6} = b \int_{-\frac{h}{2}}^{\frac{h}{2}} \sigma_{6}^{(i)} z \, dz.$$
(4)

Система усредненных напряжений (1), (2) и моментов (3), (4) является статически эквивалентной распределению напряжений в слоистом элементе.

Деформации произвольного *k*-го слоя $\varepsilon_1^{(k)}$, $\varepsilon_2^{(k)}$ и $\varepsilon_6^{(k)}$ в зависимости от расстояния *z* от срединной плоскости выражаются через деформации срединной плоскости $\varepsilon_1^{(0)}$, $\varepsilon_2^{(0)}$ и $\varepsilon_6^{(0)}$ и кривизны изгиба K_1 , K_2 и кручения K_6 :

$$\begin{aligned} \boldsymbol{\varepsilon}_{1}^{(k)} &= \boldsymbol{\varepsilon}_{1}^{(0)} + zK_{1}, \\ \boldsymbol{\varepsilon}_{2}^{(k)} &= \boldsymbol{\varepsilon}_{2}^{(0)} + zK_{2}, \\ \boldsymbol{\varepsilon}_{6}^{(k)} &= \boldsymbol{\varepsilon}_{6}^{(0)} + zK_{6}. \end{aligned} \tag{5}$$

Обобщенный закон Гука для *k*-го элементарного слоя при плоском напряженном состоянии имеет вид

$$\begin{bmatrix} \boldsymbol{\varepsilon}_{1} \\ \boldsymbol{\varepsilon}_{2} \\ \boldsymbol{\varepsilon}_{6} \end{bmatrix}^{(k)} = \begin{bmatrix} S_{11} & S_{12} & S_{16} \\ S_{12} & S_{22} & S_{26} \\ S_{16} & S_{26} & S_{66} \end{bmatrix}^{(k)} \begin{bmatrix} \boldsymbol{\sigma}_{1} \\ \boldsymbol{\sigma}_{2} \\ \boldsymbol{\sigma}_{6} \end{bmatrix}^{(k)} .$$
(6)

Из зависимости (6) с учетом равенств (5) получим

$$\begin{aligned} \varepsilon_{j}^{(0)} + zK_{j} &= S_{jl}^{(k)} \sigma_{l}^{(k)}, \\ (j, l = 1, 2, 6). \end{aligned} \tag{7}$$

Из уравнений (7) находим

$$\boldsymbol{\sigma}_{l}^{(k)} = \overline{Q}_{ij}^{(k)} \left(\boldsymbol{\varepsilon}_{j}^{(0)} + \boldsymbol{z}_{k} \boldsymbol{K}_{j} \right), \tag{8}$$

где $\overline{Q}_{ij}^{(k)} = \left(S_{lj}^{(k)}\right)^{-1}$ – матрица жесткости *k*-го слоя:

$$\overline{Q}_{ij}^{(k)} = \begin{bmatrix} \overline{Q}_{11}^{(k)} & \overline{Q}_{12}^{(k)} & \overline{Q}_{16}^{(k)} \\ \overline{Q}_{12}^{(k)} & \overline{Q}_{22}^{(k)} & \overline{Q}_{26}^{(k)} \\ \overline{Q}_{16}^{(k)} & \overline{Q}_{26}^{(k)} & \overline{Q}_{66}^{(k)} \end{bmatrix}.$$
(9)

Деформации срединной плоскости $\varepsilon_1^{(0)}$, $\varepsilon_2^{(0)}$, $\varepsilon_6^{(0)}$ и кривизны K_1 , K_2 , K_6 не зависят от координаты z, поэтому выражения усредненных напряжений σ_l и моментов M_l (l = 1, 2, 6) будут иметь вид [1]:

$$\sigma_l = A_{ij} \varepsilon_j^{(0)} + B_{ij} K_j,$$

$$M_l = B_{ij} \varepsilon_j^{(0)} + D_{ij} K_j,$$
(10)

где

$$A_{ij} = \int_{-\frac{h}{2}}^{\frac{h}{2}} \overline{Q}_{ij}^{(k)} dz, \quad B_{ij} = \frac{1}{2} \int_{-\frac{h}{2}}^{\frac{h}{2}} \overline{Q}_{ij}^{(k)} z dz,$$

$$D_{ij} = \frac{1}{3} \int_{-\frac{h}{2}}^{\frac{h}{2}} \overline{Q}_{ij}^{(k)} z^{2} dz.$$
(11)

Из системы уравнений (10) находим деформации и кривизны срединной плоскости в виде

$$\begin{bmatrix} \boldsymbol{\varepsilon}_{j}^{(0)} \\ \boldsymbol{K}_{l}^{0} \end{bmatrix} = \begin{bmatrix} a_{jk} & b_{jk} \\ c_{lk} & d_{lk} \end{bmatrix} \cdot \begin{bmatrix} \boldsymbol{\sigma}_{l} \\ \boldsymbol{M}_{k} \end{bmatrix}, \quad (12)$$
$$(j, k, l = 1, 2, 6),$$

где a_{jk} , b_{jk} , c_{lk} , d_{lk} – выражаются через характеристики элементарных слоев (11).

Матрица податливости (12) является симметричной относительно главной диагонали и $c_{1k} = b_{jk}$.

Выражения для напряжений $\sigma_l^{(k)}$ в *k*-м слое имеют вид:

=	$\overline{Q}_{11}^{(k)}$ $\overline{Q}_{12}^{(k)}$ $\overline{Q}_{12}^{(k)}$ $\overline{Q}_{16}^{(k)}$	$\overline{Q}_{12}^{(k)} \ \overline{Q}_{22}^{(k)} \ \overline{Q}_{26}^{(k)}$		$\begin{bmatrix} \varepsilon_1^{(0)} + z_k K_1 \\ \varepsilon_2^{(0)} + z_k K_2 \\ \varepsilon_6^{(0)} + z_k K_6 \end{bmatrix}$
	\mathcal{Q}_{16}	\mathcal{Q}_{26}	₽ ₆₆] [$c_6 + c_k \mathbf{n}_6$

ПРИМЕР

Рассмотрим влияние несбалансированности на напряженно-деформированное состояние пятислойного стержня при растяжении (рис. 2).

Параметры стержня: l = 0,2 м; b = 0,02 м; $h = 1,25 \cdot 10^{-3}$ м.

Растягивающая нагрузка приложена к узлам торцевого сечения. Равнодействующая распределенной нагрузки равна F = 880 H.

Варианты структуры сечения стержня в процессе исследования:

1) сбалансированная – /45/-45/0/-45/45/;

 несбалансированные структуры – /40/-45/0/-45/45/; /43/-45/0/-45/45/; /47/-45/0/-45/45/; /50/-45/0/-45/45/.

Расчет напряженно-деформированного состояния пятислойного стержня сбалансированной структуры /45/-45/0/-45/45/ проводился аналитически и конечно-элементным анализом с использованием программного продукта ANSYS. На рис. 3 показаны последовательность и углы укладки слоев в слоистом элементе.

Вычислялись нормальные и касательные напряжения в каждом слое в их локальных системах координат. В таблице представлены результаты вычислений узловых напряжений в слоях элементов, расположенных вблизи заделки. На рис. 2 они отмечены сплошными кружками.

Анализ данных таблицы показывает, что отклонение результатов аналитического расчета от численного по методу конечных элементов не превышает 5%.

На рис. 4–7 представлены результаты влияния несбалансированности структуры композита, вызванные изменением углов укладки в 1-м слое на 3°, 5°, 7°, 10°, на напряженное состояние в слоях и перемещения торцевого сечения по оси z.

Представленные на рис. 4–7 значения напряжений в слоях и перемещений свободного торца указывают на их зависимость от несбалансированности структуры композитного стержня.

Рис. 2. *а* – схема слоистого стержня, растягивающегося распределенной нагрузкой *q*, приложенной в узлах свободного торца (• – узлы, в которых определялись напряжения; – узлы, в которых определялись перемещения); *б* – глобальная система координат

Рис. 3. Схема расположения и углы укладки слоев в конечном элементе

Особенно несбалансированность сказывается на перемещении в направлении оси *z* свободного торцевого сечения. Если в сбалансированном по структуре стержне перемещения узлов свободного торца в направлении осей *x* и *z* составляет соответственно $U_x = 0,415 \cdot 10^{-3}$ м, $U_z = -0,79 \cdot 10^{-8}$ м, то для несбалансированной структуры /40/-45/0/ -45/45/ эти перемещения составляют соответственно $U_x = 0,42 \cdot 10^{-3}$ м, $U_z = -0,52 \cdot 10^{-2}$ м. Наблюдается значительное увеличение перемещения узлов в направлении оси *z* (поперечное направление).

N₂	Угол	σ_x , H/m ²		σ_{v} , H/m ²	
слоя	уклад-	Аналит.	ANSYS	Аналит.	ANSYS
	КИ				
1	45	$0,183 \cdot 10^8$	$0,195 \cdot 10^8$	$0,465 \cdot 10^7$	$0,499 \cdot 10^7$
2	-45	$0,183 \cdot 10^8$	$0,196 \cdot 10^8$	$0,465 \cdot 10^7$	$0,497 \cdot 10^7$
3	0	0,913·10 ⁸	$0,884 \cdot 10^8$	$-0,726\cdot10^7$	$-0,637\cdot10^7$
4	-45	$0,183 \cdot 10^8$	$0,196 \cdot 10^8$	$0,465 \cdot 10^7$	$0,497 \cdot 10^7$
5	45	$0,183 \cdot 10^8$	$0,195 \cdot 10^8$	$0,465 \cdot 10^7$	0,499·10 ⁷

N⁰	Угол укладки	τху, Н/м2		
слоя		Аналит.	ANSYS	
1	45	-0,968.107	-0,938.107	
2	-45	0,968.107	0,938.107	
3	0	0	-0,0098.107	
4	-45	0,968.107	0,938.107	
5	45	-0,968.107	-0,938.107	

Рис. 4. Изменение нормального напряжения в направлении армирования в каждом слое от угла укладки 1-го слоя: *1–5* – напряжения

в соответствующих слоях

Рис. 5. Изменение нормального напряжения в поперечном направлении (к направлению армирования) в каждом слое от угла укладки 1-го слоя: 1, 2, 5 – напряжения в соответствующих слоях

Рис. 6. Изменение касательного напряжения в плоскости слоя от угла укладки 1-го слоя

При изменении угла укладки 1-го слоя в сторону увеличения относительно сбалансированной структуры знак перемещения меняется, что наглядно видно из рис. 7.

Рис. 7. Изменение перемещений узлов свободного торцевого сечения в направлении оси *z* глобальной системы координат от угла укладки 1-го слоя

Из анализа представленных в статье результатов вытекает основной вывод: при проектировании и изготовлении элементов конструкций из композиционных материалов необходимо контролировать уровень возможной несбалансированности структуры и влияния ее на напряженно-деформированное состояние проектируемой конструкции.

СПИСОК ЛИТЕРАТУРЫ

1. Роценс К. А., Штейнерс К. Н. Оценка податливости и жесткости несбалансированных моноклинных композиций // Механика полимеров. 1976. № 6. С. 1030–1035.

2. Формостабильные и интеллектуальные конструкции из композиционных материалов / Г. А. Молодцов [и др.] М.: Машиностроение, 2000. 352 с.

ОБ АВТОРЕ

Первушин Юрий Сергеевич, проф. каф. сопр. материалов. Дипл. инж.-мех. (УАИ, 1958). Д-р техн. наук по динамике и прочности машин и аппаратов (Челябинск. политехн. ин-т, 1991). Иссл. в обл. мех-ки и термомех-ки композиц. материалов, термопластичн. композитов.