Вестник УГАМУ

ЭНЕРГЕТИКА, ЭЛЕКТРИФИКАЦИЯ И ЭНЕРГЕТИЧЕСКОЕ МАШИНОСТРОЕНИЕ • ЭЛЕКТРОТЕХНИЧЕСКИЕ КОМПЛЕКСЫ...

УДК 537.868:544.2

Г. Т. ЗАКИРЬЯНОВА, Л. А. КОВАЛЕВА, Н. М. НАСЫРОВ

ДВУМЕРНОЕ МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ВОЗДЕЙСТВИЯ ВЫСОКОЧАСТОТНОГО ЭЛЕКТРИЧЕСКОГО ПОЛЯ НА ЭМУЛЬСИЮ

Теоретически исследуется воздействие высокочастотного электрического поля на эмульсию и на разделение эмульсии на нефть и воду. При моделировании учитываются пондеромоторные силы, действующие на среду со стороны электромагнитного поля, перекрестные эффекты тепломассопереноса, возникающие при неизотермическом течении жидкости, и сила тяжести в поле Земли. Проведено сопоставление результатов расчетов с известными экспериментальными данными. Электрическое поле; пондеромоторные силы; перекрестные эффекты тепломассопереноса; расслоение эмульсии

введение

Проблема разрушения водонефтяных эмульсий обусловлена необходимостью обезвоживания и обессоливания нефтей, ликвидации нефтешламовых амбаров и утилизации их продукции. Первая задача связана с прогрессирующим ростом числа обводненных месторождений: на многих крупнейших месторождениях России доля воды в продукции составляет 90%, а в целом по России превышает 83,5% [1]. Вторая задача – экологическая – вызвана огромным количеством загрязненных водно-почвенных сред на территории объектов нефтегазодобывающего комплекса и их транспортировки. Для разрушения высокоустойчивых эмульсий широко используется способ разделения эмульсии на нефть и воду внешним электрическим полем низкой (промышленной) частоты. Однако при повышении напряженности электрического поля больше некоторого критического значения возникает побочный процесс, ведущий к электрическому диспергированию капель на более мелкие капли. Явление электрического диспергирования весьма нежелательно, так как при этом затрудняется слияние капель, и эмульсия становится еще более устойчивой. При повышенном содержании воды в эмульсии может произойти электрический пробой. Поэтому в промышленные электродегидраторы для обезвоживания принимается эмульсия с содержанием волы не более 30%.

Для высокочастотного (ВЧ) электрического поля критической напряженности практически не существует [2]. В ВЧ поле может обрабатываться эмульсия с содержанием воды до 80-90%. Кроме того, в высоком диапазоне частот эмульсия поглощает электромагнитную (ЭМ) энергию, в среде появляются распределенные источники тепла. Под действием неоднородного электрического поля происходит движение капель в сторону увеличения напряженности электрического поля (пондеромоторные силы) [3], а под действием неоднородного температурного поля происходит движение капель в сторону меньшей температуры (перекрестные явления – термо- и электротермодиффузия) [4]. Все это приводит к столкновению, слиянию и укрупнению капель, в результате чего капли воды, как более тяжелые, чем нефть, под действием гравитации опускаются вниз, происходит расслоение эмульсии на нефть и воду.

ВЧ способ разрушения стойких нефтяных эмульсий успешно опробован в лабораторных и промысловых условиях [5, 6]. Для этого были созданы два макетных образца электродегидратора трубного типа. Для питания электродегидратора использовался ламповый генератор ЛД-2-60М с водяным охлаждением и рабочей частотой 13,56 МГц. В результате установлено:

• применение ВЧ электрического поля обеспечивает эффективное разрушение стойких эмульсий с объемным содержанием воды 20–50% и массовым содержанием механических примесей 0,3–10%. Остаточное объемное со-держание воды при этом на выходе составило 8–10%, а из отстойника, установленного после электродегидратора, – 1,5–4%;

Контактная информация: (347) 252-99-77

Работа выполнена при поддержке РФФИ, грант N_0 08-01-97032

• использование электродегидратора позволило снизить расход деэмульгатора и температуру термохимического обезвоживания нефти.

Разработанная установка для разрушения водонефтяной эмульсии воздействием ВЧ электрического поля защищена авторским свидетельством [7].

Для понимания механизма разложения водонефтяных эмульсий, обоснования режимов его проведения, прогнозирования результатов в зависимости от свойств среды и параметров внешнего воздействия в предлагаемой работе сформулирована математическая модель в диффузионном приближении к рассматриваемому процессу. Рассматривается воздействие ВЧ электрического поля на водонефтяную эмульсию в вертикальном цилиндрическом конденсаторе. Численно решается двумерная задача в цилиндрической системе координат (r, ϕ, z), ось которой направлена вдоль оси конденсатора снизу вверх. Начало системы координат расположено в центре основания конденсатора. Принимается аксиальная симметрия задачи, т. е. рассматриваемые процессы от координаты о не зависят. В расчетах принимается, что вода является диэлектриком, так как на высоких частотах даже при наличии солей потери за счет проводимости среды значительно меньше диэлектрических потерь [2].

1. ПОСТАНОВКА ЗАДАЧИ И ОСНОВНЫЕ УРАВНЕНИЯ ПРИ ВОЗДЕЙСТВИИ ВЧ ПОЛЯ

На капли воды, движущиеся в покоящейся жидкости со скоростью \vec{v} , действует сила сопротивления Стокса [3]:

$$F = 6\pi\eta_f r_0 \vec{\upsilon},$$

где r_0 – радиус капли; η_f – вязкость дисперсионной среды (нефти).

Система уравнений, описывающая движение глобул воды в эмульсии под действием сил электромагнитного происхождения и тяжести, а также пространственно-концентрационное распределение диспергированной фазы, имеет вид [3]:

$$\rho_{\nu}\frac{\partial v_{r}}{\partial t} + \rho_{\nu}v_{r}\frac{dv_{r}}{dr} + \rho_{\nu}v_{z}\frac{dv_{r}}{dz} = -\frac{3k\omega_{r}}{4\pi v_{0}^{3}} + \frac{c}{2}\frac{\partial(\varepsilon_{c}E^{2})}{\partial r}, \quad (1)$$

$$\rho_{\nu} \frac{\partial v_{z}}{\partial t} + \rho_{\nu} v_{r} \frac{d v_{z}}{d r} + \rho_{\nu} v_{z} \frac{d v_{z}}{d z} = \frac{3k \omega_{z}}{4\pi v_{0}^{3}} - \rho_{\nu} g, \qquad (2)$$
$$\varepsilon_{c} = \frac{\partial (\varepsilon_{0} \varepsilon_{s}')}{\partial c},$$

$$\begin{aligned} \frac{\partial c}{\partial t} &= \frac{D}{r} \frac{\partial}{\partial r} \left(r \frac{\partial c}{\partial r} \right) + D \frac{\partial^2 c}{\partial z^2} - \\ &- \upsilon_r \frac{\partial c}{\partial r} - \upsilon_z \frac{\partial c}{\partial z} + \frac{1}{r} \frac{\partial}{\partial r} \left(r \left(\alpha_T + \alpha_T^E \right) D \frac{\partial T}{\partial r} \right) + \end{aligned} (3) \\ &+ \frac{\partial}{\partial z} \left(\left(\alpha_T + \alpha_T^E \right) D \frac{\partial T}{\partial z} \right), \end{aligned} (3) \\ q &= \frac{\omega \varepsilon_0 \varepsilon'_s tg \delta_s}{2} \left| \dot{E} \right|^2, E = \frac{U}{r} \ln \frac{r_2}{r_1}, \\ \rho_v &= \rho_v^0 c, \quad \rho_v^0 = \text{const}, \\ \rho_f &= \rho_f^0 (1 - c), \quad \rho_f^0 = \text{const}, \\ \rho_s &= \rho_f + \rho_v, \\ c_s &= c_f (1 - c) + c \cdot c_v, \quad \lambda_s = \lambda_f (1 - c) + c \lambda_v, \\ \eta_f &= \eta_0 \exp(-\gamma \Delta T). \end{aligned}$$

Здесь v, f, s – индексы, относящиеся к воде, нефти и их смеси; $\Delta T = T - T_0$; T – температура эмульсии; Т₀ – первоначальная температура эмульсии; q – плотность распределенных источников тепла; α_t , α_t^e – параметры термодиффузии и электротермодиффузии; ρ_{f}^{0} и ρ_{v}^{0} – истинные плотности несущей и диспергированной фаз; Е – напряженность электрического поля; ε_0 – электрическая постоянная; ε'_s , tg δ_s – относительная диэлектрическая проницаемость и тангенс угла диэлектрических потерь смеси нефти и воды; η_0 – первоначальная вязкость нефти; ү – коэффициент, учитывающий зависимость вязкости нефти от температуры; ρ_s , c_s , λ_s – плотность, удельная теплоемкость и теплопроводность смеси нефти и воды; U – разность потенциалов между обкладками конденсатора; r_1, r_2 – радиусы внутреннего и внешнего обкладок конденсатора; с – объемная концентрация глобул воды; D – коэффициент диффузионного перемешивания.

Расчет диэлектрической проницаемости смеси нефти и воды в зависимости от их объемного соотношения производится по формуле Лихтенеккера:

$$\mathbf{\varepsilon}'_s = \mathbf{\varepsilon}'^c_v \cdot \mathbf{\varepsilon}'^{(1-c)}_f.$$

Краевые условия. Для расчетных исследований принято, что обкладки конденсатора непроницаемы для капелек воды и гидрофобны, поэтому концентрация частиц на них принята равной нулю. Конденсатор со всех сторон теплоизолирован:

$$v_{r,z}(r,z,0) = 0, \quad v_r(r_2,z,t) = 0, \quad v_z(r,h,t) = 0, \quad (5)$$

$$c(r,z,0) = c_0, \quad c(r_1,z,t) = 0,$$

$$c(r_2,z,t) = 0, \quad \frac{\partial c(r,0,t)}{\partial z} = 0, \quad (6)$$

$$T(r,0) = T_0, \quad \frac{\partial T(r_1,z,t)}{\partial r} = 0, \quad \frac{\partial T(r_2,z,t)}{\partial r} = 0, \quad (7)$$
$$\frac{\partial T(r,0,t)}{\partial z} = 0, \quad \frac{\partial T(r,h,t)}{\partial z} = 0,$$

где c_0 – исходная объемная концентрация капель воды в эмульсии, h – высота цилиндрического конденсатора.

Рассматривался случай открытого сверху конденсатора. В соответствии с этим в точке z = h принималось граничное условие:

$$\frac{\partial c(r,h,t)}{\partial z} = 0.$$
(8)

2. ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ

Данные по воздействию ВЧ электрического поля, электрического поля промышленной частоты и их совместного действия на эмульсию приведены в [8]. В этой работе модель вертикального цилиндрического электродегидратора представляла собой коаксиальную систему двух латунных труб диаметрами 40 и 12 мм. В качестве источника высокочастотного напряжения использовали генератор ВЧД 2,5/13-СД-Л01 с выходной мощностью около 1 кВт и частотой генерации 13,56 МГц. Искусственную водонефтяную эмульсию готовили циркуляцией в шестеренчатом насосе (2000 об/мин) из нефти Ромашкинского месторождения. Время обработки эмульсии полем составляло 30 с. Для сравнения эффективности действия электрического поля промышленной частоты и высокочастотного поля на степень разрушения эмульсий напряжение питания в обоих случаях было одинаковым – около 1,3 кВ. Обрабатывали эмульсии полем при комнатной температуре T = 20 °C. Затем в стеклянных отстойниках исследовали кинетику расслоения эмульсий с 5, 10, 15, 20%-м содержанием воды при T = 50 °C (до такой же температуры нагревалась эмульсия при высокочастотном воздействии).

3. РЕШЕНИЕ ЗАДАЧИ И АНАЛИЗ РЕЗУЛЬТАТОВ

Система уравнений (1)–(4) с краевыми условиями (5)–(8) решалась методом конечных разностей по неявной схеме.

Принятые для расчетов параметры среды: $r_1 = 0,006$ м; $r_2 = 0,02$ м; h = 0,02 м; $\rho_f^0 =$ $= 848 \text{ кг/м}^3$; $\rho_v^0 = 1000 \text{ кг/м}^3$; $c_f = 1885 \text{ Дж/кг} \cdot \text{ K}$; $c_v = 4190 \text{ Дж/кг} \cdot \text{ K}$; $\lambda_f = 0,125 \text{ Вт/м} \cdot \text{ K}$; $\lambda_v =$ $= 0,582 \text{ Вт/м} \cdot \text{ K}$; $T_0 = 20 \text{ °C}$; $\eta_0 = 0,01561 \text{ Па} \cdot \text{ c}$; $\gamma = 0,02902 \text{ K}^{-1}$; $\varepsilon_v' = 81$; tg $\delta_v = 0,0025$; $\varepsilon_f' = 2,5$; tg $\delta_f = 0,1$; $c_0 = 0,2$. В расчетах использованы значения термодиффузионных коэффициентов, полученные в работе [9] путем сравнения экспериментального и математического моделирования: $\alpha_T = 0,0025 \text{ K}^{-1}$; $\alpha_T^e = 0,115 \text{ K}^{-1}$. Коэффициент диффузионного перемешивания определен путем сравнения расчетных и опубликованных в [8] экспериментальных данных: $D = 4 \times 10^{-5} \text{ м}^2/\text{с}$. Ориентирами при сравнении служили количественные характеристики кинетики расслоения в результате ВЧ воздействия.

На рис. 1–4 приведены графики распределения концентрация капель воды и температуры между внешним радиусом внутренней обкладки и внутренним радиусом внешней обкладки конденсатора в различные моменты времени. Расчеты показали, что кривые распределения концентрации капель воды в различные моменты времени мало отличаются друг от друга. Таким образом, к моменту времени 10 с процесс перераспределения капель воды в пространстве практически завершается (рис. 1), тогда как температура эмульсии в результате воздействия продолжает расти (рис. 2–4).

Рис. 1. Распределение концентрации глобул воды в эмульсии при *t* = 10 с

Рис. 2. Распределение температуры в конденсаторе при t = 10 с

Рис. 3. Распределение температуры в конденсаторе при *t* = 20 с

Рис. 4. Распределение температуры в конденсаторе при *t* = 30 с

Такое поведение системы объясняется тем, что в начальный период действия поля порожденные им пондеромоторные силы сдвигают капли воды ближе к внутренней обкладке конденсатора, где больше напряженность электрического поля. В точках максимума концентрация воды может достигать значительной величины, но все еще это концентрированная водонефтяная эмульсия. Известно также [10], что к концентрированным эмульсиям типа «вода в масле» относятся высокодисперсные системы со сравнительно большим содержанием дисперсной фазы (до 80 объемных % и даже выше). Максимальные значения температуры в этой области также связаны с величиной напряженности поля и, соответственно, наибольшими значениями плотности тепловых источников. Однако к моменту времени t = 10 с после начала ЭМ воздействия кривые распределения концентрации выходят на стационарный режим, т. е. наступает некоторый баланс всех действующих на систему сил, несмотря на то, что нагрев эмульсии продолжается.

4. РАСЧЕТ ДИНАМИКИ ОТСТОЯ ЭМУЛЬСИИ И СРАВНЕНИЕ С ЭКСПЕРИМЕНТОМ

Для проведения оценочных расчетов эффективности расслоения эмульсии необходимо учитывать, что реальные эмульсии являются полидисперсными системами, в которых большие капли опускаются быстрее и попутно захватывают маленькие, благодаря наличию диполь-дипольного взаимодействия [11]. При наложении на эмульсию внешнего электрического поля вводится константа коагуляции, характеризующая процесс укрупнения частиц:

$$K(V,w) = (v_V - v_w)E\sqrt{\frac{g_1\varepsilon_0\varepsilon'_s}{1-g_1}\frac{18\lambda V_g}{\rho_p g}}, \frac{M^3}{c},$$

где V_g – объем большой капли; v_V , v_w – скорость оседания большой и маленькой капель соответственно, определяемые по формуле Стокса

$$\upsilon_{V,w}(r,z,t) = \sqrt[3]{\frac{4\pi}{3}} \frac{g\rho_p}{6\pi\eta_{H}(r,z,t)} V_{g,l}^{\frac{2}{3}}, \quad (9)$$

где $V_{g, l}$ – объем капель; индекс l относится к маленькой капле; g – ускорение свободного падения; ρ_p – разность плотностей воды и нефти; $g_1 = \left(\frac{d}{D}\right)^2$; D, d – диаметры большой и маленькой капель; λ – коэффициент, компенсирующий завышенное значение силы дипольдипольного взаимодействия ($\lambda < 1$). Параметр λ и соотношение d / D подбирались из условия максимальной близости экспериментальных и расчетных кривых кинетики отстоя эмульсии. Наилучшее совпадение результатов соответствует следующим значения: d / D = 0,26; $\lambda = = 0,9$.

Вследствие слияния капель воды, число их в эмульсии уменьшается. Время, в течение которого число капель уменьшается в 2 раза, определяется выражением:

$$t_k(r,z,t) = \frac{2}{K(V,w)N(r,z,t)}$$

где N(r, z, t) – число капель в единице объема. Число капель в единице объема конденсатора в предположении, что эмульсия состоит преимущественно из больших капель, так как при рассматриваемых полях диспергирование незначительно, можно определить по формуле

$$N(r,z,t) = \frac{c(r,z,t)}{V_g},$$
(10)

где c(r, z, t) – объемная концентрация капель воды в эмульсии. Далее, определив число периодов $n(r, z, t) = \log_2 N(r, z, t)$, за время которых число капель уменьшается вдвое, можно вычислить время, за которое число капель в эмульсии уменьшится до нуля: $t_{sed}(r, z, t) =$ $= t_k(r, z, t) \cdot n(r, z, t)$.

Для расчета динамики расслоения эмульсии вычисляются интегральные значения количества капель воды в эмульсии в начальный N_0 и текущий N_{κ} моменты времени. Результаты подставляются в выражение

$$V(t) = \left(1 - \frac{N_{\kappa}}{N_0}\right) \cdot 100\%.$$

Временная зависимость *V*(*t*) определяет динамику расслоения эмульсии.

Расчеты показали, в случае открытого сверху конденсатора расслоение эмульсии происходит приблизительно одновременно по высоте. Начинается расслоение на стороне внутренней обкладки конденсатора ближе к центру, затем распространяется к обкладкам. На рис. 5 приведена расчетная кривая динамики разделения эмульсии на нефть и воду, на рис. 6 приведены для сравнения экспериментальные кривые динамики разделения эмульсии под действием на нее различных полей, в том числе ВЧ электрического поля [8]. Сравнение показывает хорошее качественное совпадение результатов расчетов с экспериментальными данными (см. кривая *3* на рис. 6).

Рис. 5. Расчетная динамика расслоения эмульсии – зависимость объемной доли эмульсии V (%), расслоившейся на нефть и воду к моменту времени *t*

Рис. 6. Экспериментальная динамика расслоения эмульсии: 1 – не обработанная полем; 2, 3, 4 – обработанная соответственно электрическим полем промышленной частоты, высокочастотным полем и совместно этими полями

Сформулированная математическая модель процесса воздействия ВЧ электрического поля на эмульсию и динамики расслоения ее на нефть и воду позволяет дать количественную оценку распределения концентрации капель воды в эмульсии, температуры и скорости разделения эмульсии на нефть и воду, что необходимо при прогнозировании использования данного метода для обезвоживания эмульсии. Рассмотрен случай открытого сверху вертикального цилиндрического конденсатора.

Распределения концентрации капель воды и температуры приблизительно одинаковы по высоте конденсатора. Расслоение эмульсии начинается с верхней части конденсатора. Сравнение теоретических расчетов с известными экспериментальными исследованиями показывает хорошее качественное совпадение расчетных и экспериментальных данных.

СПИСОК ЛИТЕРАТУРЫ

1. Хавкин А. Я. Нанотехнологии в добыче нефти и газа. М.: Нефть и газ. ПЦ «НТИС», 2008. 171 с.

2. Саяхов Ф. Л. Исследование термо- и гидродинамических процессов в многофазных средах в высокочастотном электромагнитном поле применительно к нефтедобыче: дисс. д-ра физ.-мат. наук. М., 1984. 449 с.

3. Диффузионная и многоскоростная модели двухфазных сред в электрическом поле / В. В. Гогосов [и др.] // ПММ. 1980. Вып. 2. С. 290–300.

4. Перекрестные явления переноса в дисперсных системах, взаимодействующих с высокочастотным электромагнитным полем / Р. И. Нигматуллин [и др.] // Докл. РАН. 2001. Т. 377, № 3. С. 340–343.

5. Разрушение стойких нефтяных эмульсий на промыслах электромагнитными полями резонансных частот / В. С. Хакимов [и др.] // Научнопроизводственные достижения нефтяной промышленности в новых условиях хозяйствования: науч.техн. инф. сб. М., 1989. Вып. 6. С. 12–16.

6. Interaction of Highly Stable Water-Oil Emulsion With Radio Frequency Electromagnetic Field / F. L. Sayakhov [et al.] // Heavy Crude and Tar Sands – Hydrocarbons For the 21-st Century. 5-th UNITAR International Conference on Heavy Crude and Tar Sands. 1991. V. 3. Recovery processes. P. 507–513.

7. А.с. СССР № 700163, кл. В 01 D 17/06, С 10 G 33/02. Установка для разрушения водонефтяной эмульсии / Ф. Л. Саяхов [и др.]. Опубл. 05.12.1979, Бюл. № 44.

8. Диэлектрические свойства и агрегативная устойчивость водонефтяных эмульсий / Ф. Л. Саяхов [и др.] // Нефтяное хозяйство. 1979. № 1. С. 36–39.

9. Влияние высокочастотного электромагнитного поля на перекрестные эффекты переноса в многокомпонентных системах / Ф. Л. Саяхов [и др.] // Магнитная гидродинамика. 1998. Т. 34, №2. С. 148–157. 10. Эмульсии / под ред. А. А. Абрамзона. М.: Наука, 1972. 321 с.

11. Панченков Г. М., Цабек Л. К. Поведение эмульсии во внешнем электрическом поле. М.: Химия, 1969. 190 с.

ОБ АВТОРАХ

Закирьянова Галия Тимергазиевна, преп. Уфимск. ин-та (филиала) Российск. гос. торг.эконом. ун-та. Дипл. физик (БашГУ, 1995). Иссл. в обл. электрогидродинамики многофазных систем.

Ковалева Лиала Ароновна, проф., зав. каф. прикл. физики БашГУ. Дипл. физик (БашГУ, 1974). Д-р техн. наук по механике жидкости, газа и плазмы (М., 1998). Иссл. в обл. физики и гидродинамики насыщен. пористых сред, термодинамики необратимых процессов.

Насыров Нур Мутагарович, доц. той же каф. Дипл. физик (БашГУ, 1974). Канд. физ.-мат. наук по теплофизике и молекулярн. физике (Уфа, 1992). Иссл. в обл. физ.-техн. проблем нефти и газа, электродинамики.