### АВТОМАТИЗАЦИЯ И УПРАВЛЕНИЕ ТЕХНОЛОГИЧЕСКИМИ ПРОЦЕССАМИ И ПРОИЗВОДСТВАМИ

УДК 681.51.011

# М. А. УРАКСЕЕВ, Н. А. АВДОНИНА

# МАТЕМАТИЧЕСКАЯ МОДЕЛЬ МАГНИТООПТИЧЕСКОГО ПРЕОБРАЗОВАТЕЛЯ ДЛЯ АВТОМАТИЗИРОВАННЫХ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ

Получена математическая модель магнитооптического преобразователя. Приведена структурная схема волоконно-оптического преобразователя электрического тока и магнитного поля. Первичные измерительные преобразователи; волоконно-оптические преобразователи электрического тока и магнитного поля; магнитооптический эффект Фарадея; вращение плоскости поляризации; линейно поляризованный свет; постоянная Верде; внешнее магнитное поле; показатели преломления

#### введение

При автоматизации технологических процессов и производств для одновременного контроля большого количества параметров необходим широкий спектр первичных измерительных преобразователей. При этом качество управления во многом определяется характеристиками этих преобразователей.

В общем комплексе преобразователей физических величин в последние два десятилетия бурно развиваются волоконно-оптические преобразователи в силу ряда их преимуществ перед другими типами преобразователей: малый вес и габариты; большой динамический диапазон ( $10^{6}$ ); высокое быстродействие ( $10^{-9}$ ); удобство эксплуатации и обслуживания; абсолютная пожаро- и взрывобезопасность; совместимость с современными цифровыми системами управления и передачи информации, в том числе и на очень большие расстояния; высокая помехозашишенность от внешних возмущений.

Во многих отраслях промышленности: электроэнергетике, электрохимии, цветной металлургии существует необходимость постоянного измерения электрических токов, высоких и сверхвысоких напряжений и магнитных полей. К тому же сегодня при внедрении автоматизированных процессов промышленные предприятия вынуждены экономить электроэнергию и контролировать ее фактический расход. Именно поэтому в России и других странах широко ведутся исследования и разработки по созданию волоконно-оптических преобразователей электрического тока и магнитного поля [1–4], которые по техникоэкономическим показателям намного эффективнее известных систем и устройств. Например, в традиционно используемых системах измерения силы постоянного тока до 500 кА применяются очень сложные преобразователи тока. Эти преобразователи, обычно построенные на эффекте Холла, оказываются тяжелыми и громоздкими. Приборы, применяемые для измерения больших токов, могут весить до 2000 кг [1].

В новом оптоволоконном датчике тока FOCS фирмы АББ для измерения сильных постоянных токов используется магнитооптический эффект Фарадея [5]. Вот некоторые технические характеристики такого датчика: точность  $\pm 0,1\%$ ; повторяемость  $\pm 0,02\%$ ; линейность  $\pm 0,1\%$ ; повторяемость  $\pm 0,02\%$ ; линейность  $\pm 0,1\%$ ; динамический диапазон > 4 кГц; температурная чувствительность  $< \pm 0,002\%$ /°С, масса чувствительного оптоэлектронного элемента – до 15 кг; диаметр волоконнооптического кабеля – 6 мм; оптоэлектронный блок имеет размеры 264х162х250 мм.

К сожалению, несмотря на достижения в области разработки новых магнитооптических преобразователей и датчиков, в известных работах отсутствуют исследования их основных характеристик, которые позволили бы получить научно обоснованные результаты и рекомендации по повышению эффективности магнитооптических преобразователей. Для получения аналитических зависимостей основных характеристик магнитооптических преобразователей необходимо знание их математических моделей.

Контактная информация: 8(34761)-4-26-51

Вот почему целью данной работы является разработка математической модели магнитооптического преобразователя с учетом электронного строения однородных магнитооптических сред, являющихся чувствительным элементом магнитооптического преобразователя.

### МАГНИТООПТИЧЕСКИЕ ПРЕОБРАЗОВАТЕЛИ ЭЛЕКТРИЧЕСКОГО ТОКА И МАГНИТНОГО ПОЛЯ

Среди волоконно-оптических преобразователей электрического тока и магнитного поля наиболее эффективными являются преобразователи, основанные на магнитооптическом эффекте Фарадея, заключающемся во вращении плоскости поляризации линейно поляризованного света, распространяющегося в магнитооптическом веществе вдоль магнитного поля, в котором находится это вещество.

На рис. 1 приведена простейшая структурная схема магнитооптического преобразователя электрического тока и магнитного поля [6, 7].



# **Рис. 1.** Структурная схема магнитооптического преобразователя электрического тока и магнитного поля

В качестве источника оптического излучения используется лазер или лазерный диод 1. Последовательно с ним оптически соединены поляризатор 2, магнитооптическая ячейка Фарадея 3, анализатор 4, фотодиод 5, преобразователь ток-напряжение 6, аналогово-цифровой преобразователь 7 и жидкокристаллический индикатор 8. В поляризаторе излучение лазера или лазерного диода преобразуется в плоскополяризованную волну света. В магнитооптической ячейки Фарадея происходит поворот плоскости поляризации на угол фарадеевского вращения

# $\varphi = V H_{\text{внеш}} l$ ,

где V – постоянная Верде, характеризующая магнитооптический материал;  $H_{\rm внеш}$  – напряженность магнитного поля, действующего извне на магнитооптическую ячейку Фарадея; l – длина магнитооптической ячейки.

На рис. 1 через  $J_0$  обозначена интенсивность света, создаваемого лазером или лазерным диодом;  $\varphi$  – угол фарадеевского вращения; J – интенсивность света на выходе анализатора, определяемая по закону Малюса [8]; I –

ток на выходе фотодиода; U – напряжение на выходе преобразователя ток-напряжение, позицией 9 изображена магнитная силовая линия измеряемого магнитного поля. В случае измерения электрического тока, протекающего по проводнику или проводу линии электропередачи, используется закон полного тока

# $H_{\rm BHeIII} = I / 2\pi R$ ,

где  $H_{\text{внеш}}$  – напряженность магнитного поля, создаваемого током I при его протекании по проводнику; R – расстояние от проводника до магнитооптической ячейки.

# МАТЕМАТИЧЕСКАЯ МОДЕЛЬ МАГНИТООПТИЧЕСКОГО ПРЕОБРАЗОВАТЕЛЯ

Учитывая, что по принципу действия магнитооптических преобразователей важнейшим их элементом является ячейка Фарадея, рассмотрим математическую модель фарадеевского вращения плоскости поляризации под действием внешнего магнитного поля [9, 10].

Вращение плоскости поляризации в кристаллах вызвано разницей скоростей распространения право- и левовращающей составляющих линейно поляризованной световой волны вследствие ассиметрии внешней формы кристалла. Для других однородных тел (к которым относятся и эпитаксиальные пленки) возникновение вращения плоскости поляризации выводится из поляризуемости атомов и молекул активно оптической однородной среды в электрическом поле. Экспериментально известно, что угол вращения линейно поляризованной световой волны в веществе определяется направлением магнитного поля Н<sub>внеш</sub>. Покажем теоретически, что угол поворота светового луча не зависит от его направления, что очень важно для разработки современных магнитооптических систем и устройств.

Будем считать  $H_{\text{внеш}} = B_{\text{внеш}}$ , где  $B_{\text{внеш}}$  – индукция внешнего магнитного поля. Это вполне допустимо, так как в экспериментах по искусственному вращению используют прозрачные тела, у которых в большинстве своем магнитная проницаемость  $\mu \approx 1$ .

Для последующих вычислений пренебрежем затуханием колебаний, т. е. будем считать, что тормозящая сила отсутствует ( $\gamma = 0$ ), что вполне реалистично вдали от линии поглощения.

Пусть  $H_{\text{внеш}}$  направлено вдоль оси Z и в этом же направлении распространяется световая волна. Напряженность ее электрического поля E и смещение электрона r лежат в плоскости XY, перпендикулярной оси Z. Дифференциальное уравнение осциллирующего электрона в этом случае

$$m\ddot{r} + fr = q[E + 1/c[\dot{r}H_{\rm BHeIII}]], \qquad (1)$$

где m – масса электрона; fr – квазиупругая сила; q – заряд электрона; c – скорость электромагнитных волн в вакууме.

Перейдем к составляющим векторов по координатным осям *X* и *Y*. Вводя стандартное обозначение  $f/m = \omega_0^2$ , получаем

$$\ddot{r}_x - \frac{q}{mc} \dot{r}_y H_{\text{BHeIII}} + \omega_0^2 r_x = \frac{q}{m} E_x,$$

$$\ddot{r}_y + \frac{q}{mc} \dot{r}_x H_{\text{BHeIII}} + \omega_0^2 r_y = \frac{q}{m} E_y.$$
(2)

Объединим эти вещественные дифференциальные уравнения (2) в одно комплексное дифференциальное уравнение. Для этого умножим второе из уравнений (2) на *i* и сложим получившиеся выражения. Тогда

$$\frac{d^2}{dt^2} (r_x + ir_y) + i \frac{qH_{\text{внеш}}}{mc} \frac{d}{dt} (r_x + ir_y) + \omega_0^2 (r_x + ir_y) = \frac{q}{m} (E_x + iE_y).$$
(3)

При изложении сущности теории Френеля установлено, что исходную линейно поляризованную волну всегда можно разложить на две распространяющиеся в том же направлении циркулярно поляризованные волны (по правому и левому кругам). Именно это лежит в основе физического смысла проведенной физической операции – перехода от вещественных уравнений (2) к комплексному уравнению (3). Для доказательства наличия поворота плоскости поляризации суммарной волны, получающейся в результате сложения двух циркулярно поляризованных волн после прохождения ими в веществе некоторого пути *l* при наличии продольного внешнего магнитного поля  $H_{\text{внеш}} \neq 0$ , необходимо, чтобы в результате решения уравнения (3) показатели преломления для двух циркулярно поляризованных волн оказались не одинаковы  $(n_{\text{пр}} \neq n_{\text{лев}})$ .

Будем считать, что «на входе» в вещество (z = 0) имеются две волны, поляризованные по кругу, а именно

$$E_x = E_0 \cos \omega t, \qquad E_y = E_0 \sin \omega t.$$
 (4)  
Или

 $E_x + iE_y = E_0 \exp(i\omega t)$  (для правого вращения),  $E_x + iE_y = E_0 \exp(-i\omega t)$  (для левого вращения),

Поскольку при изучении данного явления мы рассчитываем действие электромагнитной

волны на излучающий электрон, решение этих уравнений будем искать в виде

$$r_x + ir_y = r_0 \exp(\pm i\omega t).$$

После дифференцирования и подстановки этого выражения в (3) находим

$$r_0 = \frac{(q/m)E_0}{(\omega_0^2 - \omega^2) \pm q\omega H_{\text{внеш}}/(mc)}.$$
 (5)

Полученное выражение вещественно, что вполне логично, так как мы пренебрегли поглощением, а магнитное поле не тормозит направление движения электрических зарядов, а лишь изменяет их.

В дальнейших вычислениях рассчитаем поляризацию среды P = N gr и найдем ее показатель преломления  $n^2 = \varepsilon = 1 + 4\pi P / E$ . В результате получаем выражение

$$n_{\pm}^{2} = 1 + \frac{4\pi Nq^{2} / m}{\left(\omega_{0}^{2} - \omega^{2}\right) \pm q\omega H_{\text{BHeIII}} / (mc)}.$$
 (6)

Если волна распространяется в какой-либо экспериментальной среде, то для нее могут быть получены два значения показателя преломления:  $n_{\rm np}$  и  $n_{\rm лев}$ . Таким образом, доказан поворот плоскости поляризации, который и происходит при наличии продольного магнитного поля  $H_{\rm внеш}$ .

Для получения в явном виде значений показателей преломления выражение (6) запишем в виде:

$$n_{\text{neb}}^{2} - n_{\text{np}}^{2} = \frac{4\pi Nq^{2}}{m} \times \frac{2qH_{\text{внеш}}\omega/(mc)}{\left(\omega_{0}^{2} - \omega^{2}\right)^{2} - \left[q\omega H_{\text{внеш}}/(mc)\right]^{2}}.$$
(7)

Полученная разность показателей преломления связана с поворотом плоскости поляризации плоскополяризованной волны, прошедшей путь l в исследуемой среде на угол  $\varphi$ , следующим выражением

$$\varphi = \frac{\omega}{2c} \left( n_{\text{neb}} - n_{\text{np}} \right) i = \frac{2\pi N q^3}{nm^2 c^2} \frac{\omega^2 i H_{\text{внеш}}}{\left( \omega_0^2 - \omega^2 \right)^2}.$$
 (8)

Таким образом, можно получить выражение для постоянной Верде в эффекте Фарадея

$$V = \frac{2\pi N q^3}{nm^2 c^2} \frac{\omega^2}{\left(\omega_0^2 - \omega^2\right)^2}.$$
 (9)

При условии, что  $\omega << \omega_0$ , можно пренебречь  $\omega^2$  в знаменателе последнего выражения и получить зависимость постоянной Верде от частоты V~ $\omega^2$ ~1/ $\lambda^2$ .

|                                      | ······                                         | ······································ | , ,                                            |
|--------------------------------------|------------------------------------------------|----------------------------------------|------------------------------------------------|
| Материал                             | <i>V</i> , рад.Т <sup>-1</sup> м <sup>-1</sup> | Материал                               | <i>V</i> , рад.Т <sup>-1</sup> м <sup>-1</sup> |
| Кристаллы:                           |                                                | Стекла:                                |                                                |
| Cd <sub>1-x</sub> Mn <sub>x</sub> Te | ≤2000                                          | M-16 (ER-123)                          | -71,0                                          |
| $EuF_2$                              | -262                                           | ER-5                                   | -71, -73                                       |
| $Tb_3Al_5O_{12}$                     | -180                                           | $Pr (PO_3)_3$                          | -39,6                                          |
| $LiTbF_4$                            | -128                                           | Fr-7                                   | -34,9                                          |
| ZnSe                                 | 118                                            | Fr-4                                   | -30,5                                          |
| CeF <sub>3</sub>                     | -114                                           | SF 59                                  | 28,5                                           |
| Bi <sub>4</sub> GeO <sub>12</sub>    | 29,8                                           | SiO <sub>2</sub>                       | 4,0                                            |
| LaF <sub>3</sub>                     | 3,5                                            | SF N64                                 | 1,5                                            |
| •                                    |                                                | •                                      |                                                |

Значения константы Верде для различных материалов ( $\lambda = 633$  нм, T = 300 K)

Вещество, помещенное в магнитное поле нельзя характеризовать единым показателем преломления *n*. Полученное выражение (9) для постоянной Верде можно использовать при расчетах магнитооптических преобразователей.

Прикладная направленность эффекта Фарадея в последние годы возросла в связи с исследованием разнообразных специфических свойств новых магнитооптических материалов.

Материалы с большими значениями постоянной Верде издавна привлекают к себе внимание ввиду их возможного применения в различных магнитооптических устройствах.

В табл. 1 [11–13] представлены значения постоянной Верде основных кристаллических и стеклообразных материалов, пригодных к применению в видимой и ближней области спектра.

Нельзя не заметить, что для некоторых материалов значения постоянной Верде более чем на порядок величины превышают константы других материалов, используемых в активных средах.

Поэтому некоторые кристаллы могут быть использованы в качестве активной среды для компактных вентилей Фарадея (оптических изоляторов) [14]. Напомним, что это устройство обеспечивает малые потери для прохождения излучения в одном направлении и создает сильное затухание его интенсивности в противоположном [15].

Но наибольшего практического применения эффект Фарадея достиг при разработке преобразователей магнитного поля, где проблема частотной зависимости постоянной Верде очень важна для обеспечения хороших динамических характеристик преобразователей магнитного поля.

Исследования в направлении изучения эффекта Фарадея в последние десятилетия интенсивно развиваются. Исследования одновременного воздействия на магнитооптические материалы эффекта Фарадея и деформации в различных их комбинациях, дополнительное изучение исследования эффекта Фарадея в тонких пленках могут скрывать резервы научного и прикладного плана.

Таблица 1

Таким образом, полученная математическая модель (8) с учетом электронного строения однородных магнитооптических сред может быть использована для исследования основных характеристик малогабаритных магнитооптических систем и устройств, чувствительным элементом которых являются эпитаксиальные феррит-гранатовые магнитооптические пленки, что позволит увеличить их эффективность.

# СПИСОК ЛИТЕРАТУРЫ

1. Бонерт К., Гугенбах П. Прорыв в области измерения сильных постоянных токов // АБВ Ревю. 2005. № 1. С. 6–10.

2. Электротехника для качественного энергоснабжения на выставке «ЭлектротехноЭкспо, 2007» // Еженедельник «Снабженец». 2007. № 48 (596). С. 7–8.

3. Власов М., Сердцев А. Высоковольтные оптические преобразователи для систем измерения и анализа качества электрической энергии // Энергорынок. 2006. № 1. С. 1–5.

4. Левый С. В. Способ магнитооптического контроля изделий. Патент РФ № 2159426. Опубл. 2000. 11 20.

5. Ураксеев М. А., Авдонина Н. А. Волоконно-оптические датчики для автоматизированных технологических процессов и производств // Приборы и системы. Управление, Контроль, Диагностика. 2009. № 4. С. 29–33.

6. Ураксеев М. А., Соловей К. В. Информационно-измерительное устройство контроля магнитного поля и электрического тока. Патент РФ на полезную модель № 62713. 2007. Бюллетень № 12.

7. Ураксеев М. А., Соловей К. В. Волоконнооптический датчик магнитного поля и электрического тока. Патент РФ на полезную модель № 61042. 2007. Бюллетень № 4. 8. Физический энциклопедический словарь. М.: Энциклопедия, 1983. 928 с.

10. **Калитеевский Н. И.** Волновая оптика: Учеб. пособие. СПб.: Лань, 2006. 480 с.

11. **Weber M. J.** Faraday Rotator Materials. Lawrence Livermore Laboratory; Univer sity of California; Livermore, California, 1991.

12. Weber M. J. //Proc. Soc. Photo Opt. Instrum. Eng./Ed. Larry G. Deshazer. 1997. V. 681. P. 75.

13. Glass A. M. // Science. 1997. V. 235. P. 1003.

14. **Turner A. E., Gunshor R. L., Datta S.** // Appl. Opt. 1993. V. 22. P. 3152.

15. Fischer G. // J. Opt. Commun. 1997. V. 8. P. 18



ОБ АВТОРАХ

Ураксеев Марат Абдуллович, проф. каф. инф.-изм. техники. Дипл. инж.-мех. (Ташкентск. политехн. ин-т, 1963). Д-р тех. наук по элементам и устройствам вычисл. техн. и систем упр-я. Иссл. в обл. волоконнооптическ. датчиков для техн. процессов и производств.

Авдонина Надежда Алексеевна, ст. преп. каф. «Технология производства летательных аппаратов» Кумерт. филиала УГАТУ. Дипл. инж.-мех. (УАИ, 1990). Иссл. в обл. анализа и синтеза магнитооптическ. преобразователей электрическ. тока и магнитн. поля.