СИСТЕМНЫЙ АНАЛИЗ, УПРАВЛЕНИЕ И ОБРАБОТКА ИНФОРМАЦИИ

УДК 629.7:681.324

В. И. ВАСИЛЬЕВ, С. В. ЖЕРНАКОВ, И. И. МУСЛУХОВ

БОРТОВЫЕ АЛГОРИТМЫ КОНТРОЛЯ ПАРАМЕТРОВ ГТД НА ОСНОВЕ ТЕХНОЛОГИИ НЕЙРОННЫХ СЕТЕЙ

Рассматриваются нейросетевые алгоритмы для повышения отказоустойчивости измерительных каналов авиационного ГТД. Решаются задачи контроля параметров авиационного двигателя. Предложена инженерная методика, которая может быть применена на этапах стендовых и летных испытаний авиационных ГТД. Отказоустойчивость ; контроль ; диагностика ; нейронные сети

введение

Развитие современной авиационной транспортной системы привело к повышению нагрузки на авиационный газотурбинный двигатель (ГТД) и на его основные узлы, что негативно сказалось на безопасности полетов. В условиях повышенной нагрузки на узлы и агрегаты ГТД повышение безопасности его функционирования достигается на основе использования стратегии управления эксплуатацией по фактическому техническому состоянию. Это предполагает использование наряду с классическими подходами и новых интеллектуальных методов, позволяющих эффективно и качественно осуществлять процесс контроля параметров авиационного двигателя, с учетом так называемых «НЕ-факторов»: неполноты измеряемой информации, шумов измерений, наличия конструктивной, параметрической и экспертной неопределенности при оценке параметров ГТД и т. д. Основу управления эксплуатацией современного ГТД составляет подчинение целей функционирования его бортовых информационных технологий контроля и управления эксплуатацией целям функционирования авиационного двигателя, определяющим правила и порядок обработки комплексной информации в соответствии с условиями его эксплуатации. В настоящее время повышение эксплуатационной нагрузки на ГТД приводит к сокращению времени на его

Контактная информация: (347)276-06-72

обслуживание, т. е. на контроль и диагностику технического состояния, что требует использования оперативных и эффективных методов контроля, базирующихся на комплексной автоматизации и интеллектуализации этих процессов. Эффективность контроля состояния авиационного двигателя существенно зависит от вероятности правильного распознавания его технического состояния, которая непосредственно влияет на качество систем управления эксплуатацией ГТД, что в конечном итоге определяет экономичность и безопасность полетов.

Несмотря на значительный объем исследований в данной области, информационные технологии контроля параметров ГТД не являются совершенными по ряду причин: с одной стороны слабая информационная «увязка», отсутствие элементов «интеллектуальности», позволяющих быстро, качественно и эффективно осуществлять поддержку принятия ответственных решений и, как следствие, сокращать общее время, затрачиваемое на обслуживание ГТД; с другой, нестационарность физических процессов в авиационном двигателе, сложность их математического описания, зависимость его технических характеристик от внешних условий работы, ограниченный состав измеряемых параметров, их технологический разброс и т. д. Указанные факторы приводят к необходимости автоматизации процессов принятия решений о техническом состоянии двигателя в условиях неопределенности.

Основными направлениями, определяющими повышение эффективности бортовых информационных технологий контроля состояния ГТД, следует считать интеллектуализацию процессов обработки информации с привлечением нейросетевых методов, которые способны обес-

Результаты научных исследований поддержаны грантами РФФИ: № 06-08-00446-а, 08-08-00774-а.

печить повышение качества бортовых алгоритмов контроля параметров ГТД при действии указанных выше факторов неопределенности. Таким образом, создание бортовых информационных технологий контроля и диагностики технического состояния авиационного двигателя предполагает разработку соответствующих метода, методики, алгоритмического и программного обеспечения, позволяющих повысить эффективность и качество решения задач контроля и управления эксплуатацией авиационных ГТД.

ОСОБЕННОСТИ БОРТОВОЙ РЕАЛИЗАЦИИ НЕЙРОСЕТЕВЫХ АЛГОРИТМОВ КОНТРОЛЯ И ДИАГНОСТИКИ ГТД

Анализ работ в области построения бортовых систем контроля и диагностики (БСКД) современных авиационных двигателей как в России, так и за рубежом свидетельствует о том, что при их разработке наметилась устойчивая тенденция к интеллектуализации и переход от пассивного контроля к активному, позволяющему не только локализовать отказы, но и по возможности устранить их [1-3]. Таким образом, БСКД постепенно выделяются в самостоятельные системы, обладающие высокой сложностью, многопроцессорностью, способные решать комплексные задачи с высоким качеством и эффективностью в темпе реального времени. Следует отметить и то обстоятельство, что современные БСКД взаимодействуют с системами управления ГТД, позволяя последним плавно и своевременно воздействуя на исполнительные механизмы, с одной стороны, повышать качество управления авиационным двигателем и его подсистемами, а с другой, повышать надежность ГТД в процессе его эксплуатации. Однако наличие факторов неопределенности (НЕ- факторов), а также необходимость принятия оперативных решений в реальном времени создают дополнительные проблемы в процессе контроля и диагностики в рамках БСКД.

Анализ современных БСКД показывает, что спектр задач, решаемых ими, непрерывно растет. Это объясняется постоянным совершенствованием самого авиационного двигателя и, как следствие, выполняемых им функций, а также соответствующим увеличением числа контролируемых и диагностируемых параметров на борту самолета. Так, БСКД для ТВВД Д27 [1, 3] решает широкий спектр задач, связанных с оценкой остаточного ресурса ГТД и контролем его параметров. В процессе решения задачи выработки ресурса ГТД решаются задачи прогноза (краткосрочного) текущего состояния двигателя и тренд – анализа его параметров. В БСКД ТВВД-27 решаются следующие задачи контроля большого числа параметров двигателя:

• температуры и давления газов за и перед турбиной;

• частоты вращения ротора компрессора низкого и высокого давления;

 работоспособности системы смазки и суфлирования ГТД по предельным значениям параметров маслосистемы двигателя;

 расхода масла по изменению уровня в маслобаке ГТД;

• работоспособности топливной системы ГТД;

• уровня вибраций;

• температуры в полостях двигателя;

• температуры подшипника;

• массового расхода топлива;

• температуры и давления воздуха за компрессором;

• технического состояния проточной части двигателя по его термогазодинамическим параметрам.

Вместе с тем, при большом многообразии решаемых задач, существуют определенные сложности:

• ограниченные вычислительные ресурсы (объем оперативной памяти, быстродействие, точность полученных результатов);

• трудности формализации классических алгоритмов контроля и диагностики и, как следствие, их практической реализации;

• необходимость реализации перечисленных выше алгоритмов на языке низкого уровня (ассемблер);

• трудности восстановления информации при отказе датчиков.

В этих условиях использование нейросетевых технологий весьма перспективно. Ниже рассматриваются особенности применения нейросетевых технологий в составе БСКД на примере решения последней из перечисленных выше задач, связанной с использованием имеющейся аналитической избыточности при измерении параметров ГТД для восстановления сигналов при отказах датчиков.

ВОССТАНОВЛЕНИЕ ИНФОРМАЦИИ С ИСПОЛЬЗОВАНИЕМ НЕЙРОСЕТЕВОЙ МОДЕЛИ ГТД НА ПРИМЕРЕ БСКД ЭСУ – 27

Одной из ключевых задач, решаемых на борту летательного аппарата, является выявле-

ние параметрических отказов датчиков (деградации их характеристик). В этом случае может, как правило, использоваться метод мажоритарного контроля (рис. 1) [4].

Суть метода мажоритарного контроля заключается в том, что если среди датчиков Д₁ или Д2 (измеряющих, например, давление воздуха за компрессором P_2^*) (рис. 1) один из них имеет характеристику, отличную от эталонной, то введение дополнительного канала измерения в виде математической модели (MM) позволяет вычислять среднее значение данного измерения (медиану) и тем самым восстанавливать потерянную с датчика информацию. В данной работе предлагается использовать в качестве ММ ГТД его нейросетевую модель, полученную в процессе решения задачи идентификации (рис. 2).

Рис. 1. Реализация мажоритарного контроля

Рис. 2. Нейросетевая модель ГТД

Решение задачи восстановления информации с использованием нейросетевой модели ГТД декомпозируется на две подзадачи:

задача идентификации MM;

• задача восстановления информации.

Рассмотрим подробно решение каждой из перечисленных выше задач.

ИДЕНТИФИКАЦИЯ ХАРАКТЕРИСТИК ГТД НА ОСНОВЕ НЕЙРОННЫХ СЕТЕЙ

Вопросам идентификации характеристик ГТД с использованием нейронных сетей (НС) в последние годы уделяется значительное внимание [5–28]. Вместе с тем, полученные в этом направлении результаты не лишены определенных недостатков, заключающихся в следующем:

• процесс решения задачи идентификации в нейросетевом базисе, как правило, осуществляется на основе метода проб и ошибок;

• отсутствуют обоснованные рекомендации по выбору структуры (сложности) НС, алгоритмов обучения и т. д.;

• отсутствует формализованная инженерная методика решения подобных задач.

Как показывают исследования, основные этапы инженерной методики построения нейросетевой модели ГТД должны включать в себя:

1. Предварительный анализ данных на этапе постановки задачи и выбора архитектуры нейронной сети.

2. Преобразование (предобработка) данных для построения более эффективной процедуры настройки сети.

3. Выбор архитектуры нейронной сети.

4. Выбор структуры нейронной сети.

5. Выбор алгоритма обучения нейронной сети.

6. Обучение и тестирование нейронной сети.

7. Анализ точности полученного решения.

Рассмотрим постановку задачи идентификации характеристик ГТД на установившихся режимах работы. На этих режимах двигатель описывается уравнениями вида:

$$X = f_1(A, U), Y = f_2(A, X),$$
(1)

где X, Y, U и A — векторы переменных состояния, выходов (измеряемых термогазодинамических параметров) ГТД, неизвестных параметров и управляющих воздействий модели, размерности r, n, m и k соответственно; f_1 и f_2 некоторые нелинейные вектор-функции.

Задача идентификации заключается в нахождении такой зависимости

$$Y^* = f^*(A, U).$$
 (2)

которая бы удовлетворяла условию $||Y - Y^*|| \prec \varepsilon$ на заданном множестве значений $X \in \Gamma_x$, $Y \in \Gamma_y, U \in \Gamma_u$, где $\Gamma_x, \Gamma_y, \Gamma_u$ определяются режимами работы ГТД; ε – допустимая погрешность. Процедура идентификации ГТД с помощью НС показана на рис. 3.

Рис. 3. Схема решения задачи идентификации ГТД

Здесь $\varepsilon_1,..., \varepsilon_n$ – отклонения между измеренными параметрами двигателя $Y_1, Y_2..., Y_n$ и параметрами $Y^{*}_1, Y^{*}_2..., Y^{*}_n$, рассчитанными с использованием НС при одних и тех же управляющих воздействиях $U_1,..., U_n$; E – суммарная квадратичная ошибка обучения НС.

Решение задачи идентификации ГТД сводится к обучению нейронной сети, которое заключается в настройке ее весов исходя из условия (3).

$$E = \sum_{i=1}^{n} (Y_i - Y_i^*)^2 \to \min$$
 (3)

Рассмотрим различные постановки задачи идентификации ГТД: а) идентификация параметров статической многорежимной модели ГТД; б) идентификация параметров обратной (статической) многорежимной модели ГТД; в) идентификация динамической модели ГТД [5–28].

ИДЕНТИФИКАЦИЯ ПАРАМЕТРОВ СТАТИЧЕСКОЙ МНОГОРЕЖИМНОЙ МОДЕЛИ ГТД

В теории авиационных двигателей принято описывать множество установившихся режимов работы ГТД совокупностью функциональных зависимостей относительно значений приведенных параметров двигателя:

$$\begin{array}{l} n_{1_{np}} = f_1 \big| G_{T_{np}} \big|, \quad n_{2_{np}} = f_2 \big| G_{T_{np}} \big|, \quad G_{6_{np}} = f_3 \big| G_{t_{np}} \big|, \\ P_{2_{np}}^* = f_4 \big| G_{T_{np}} \big|, \quad T_{2_{np}}^* = f_8 \big| G_{T_{np}} \big|, \quad T_{3_{np}}^* = f_5 \big| G_{T_{np}} \big|, \quad (4) \\ T_{4_{np}}^* = f_6 \big| G_{T_{np}} \big|, \quad R_{np} = f_7 \big| G_{T_{np}} \big|, \end{array}$$

где $n_{1_{np}}$ – приведенная частота вращения ротора компрессора низкого давления (%); $n_{2_{np}}$ – приведенная частота вращения ротора компрессора высокого давления (%); $G_{e_{np}}$ – приведенный расход воздуха через компрессор (кг/с); $P_{2_{np}}^*$ – приведенное давление воздуха за компрессором (КПа); $T_{2_{np}}^*$ – приведенная температура воздуха за компрессором (К); $T_{3_{np}}^*$ – приведенная температура газов перед турбиной (К); $T_{4_{np}}^*$ – приведенная температура газов за турбиной (К); R_{np} – приведенная тяга (кН); $G_{T_{np}}$ – приведенный расход топлива (кг/с).

Процесс перехода от физических параметров двигателя к приведенным значениям (и обратно), осуществляемый с помощью нейросетевой модели ГТД, показан на рис. 4.

Рис. 4. Переход от нейросетевой модели ГТД в приведенных параметрах к модели в физических параметрах

Здесь преобразование измеренных (физических) параметров ГТД к приведенным (соответствующим стандартным атмосферным условиям $T_{H}^{*} = 288,15$ К; $P_{H} = 760$ мм рт. ст.) осуществляется по формулам газодинамического подобия:

$$n_{u_{p}} = n_{1} \sqrt{\frac{288}{T_{H}^{*}}}; \quad n_{2_{u_{p}}} = n_{2} \sqrt{\frac{288}{T_{H}^{*}}}; \quad G_{q_{u_{p}}} = \frac{G_{e} * 760}{P_{H}^{*}} \sqrt{\frac{T_{H}^{*}}{288}};$$

$$P_{2_{u_{p}}}^{*} = P_{2} \frac{760}{P_{H}^{*}}; \quad T_{2_{u_{p}}}^{*} = T_{2}^{*} \frac{288}{T_{H}^{*}}; \\ T_{3_{u_{p}}}^{*} = T_{3}^{*} \frac{288}{T_{H}^{*}}; \quad T_{4_{u_{p}}}^{*} = T_{4}^{*} \frac{288}{T_{H}^{*}};$$

$$R_{u_{p}} = R \frac{760}{P_{H}^{*}}.$$
(5)

Влияние условий полета на параметры воздуха на входе в двигатель при этом учитывается в виде:

$$T_{\rm H}^* = T_{\rm H} \left(1 + \frac{k - 1}{2} M_{\Pi}^2 \right);$$

$$P_{\rm H}^* = P_{\rm H} \left(1 + \frac{k - 1}{2} M_{\Pi}^2 \right)^{\frac{k}{k - 1}} \sigma_{\rm s},$$
(6)

где $T_{\rm H}$ и $P_{\rm H}$ – соответственно температура (К) и давление (мм рт. ст) воздуха на высоте полета $H; T_{\rm H}^*$ и $P_{\rm H}^*$ – заторможенные значения этих параметров на данной высоте полета; k – показатель адиабаты; M_{Π} – число Маха полета; σ_{e} – коэффициент восстановления полного давления в воздухозаборнике.

Рассмотрим пример решения задачи идентификации характеристик ГТД, полученных в процессе стендовых испытаний двигателя.

1. Анализ данных. В качестве исходных данных воспользуемся результатами испытаний, полученными в процессе натурных испытаний двухвального двигателя на моторном стенде. Эти данные записаны применительно к стандартным атмосферным условиям в табл. 1.

Полная обучающая выборка содержит 109 строк, соответствующих различным режимам испытаний. Здесь в относительных (безразмерных) единицах приведены следующие параметры: G_{t-pr} – приведенный расход топлива; *n*_{1-*pr*} – приведенная частота вращения ротора компрессора низкого давления; n_{2-pr} – приведенная частота вращения ротора компрессора высокого давления; G_{e-pr} – приведенный расход воздуха; P_{2-pr}^* – приведенное давление воздуха за компрессором; T^*_{4-pr} – приведенная температура газов на выходе из турбины; R_{-pr} – приведенная тяга двигателя; T^*_{2-pr} – приведенная температура воздуха на выходе из компрессора; T^{*}_{3-pr} – приведенная температура газов перед турбиной.

Одним из основных вопросов, решаемых на этапе анализа данных, является оценка репрезентативности выборки, т. е. полноты ее представления. Решение данной задачи осуществляется с помощью методов кластерного или дискриминантного анализа [29, 30].

В процессе кластеризации с помощью пакета Statistica 6.0 были выделены восемь классов (рис. 5). После процедуры рандомизации были выделены собственно обучающая (контрольная) и тестовая выборки (в соотношении 2:1, т. е. 67% и 33%). Процесс кластеризации обучающей (рис. 6) и тестовой выборок показывает, что они так же, как и исходная выборка, содержат по восемь классов. Расстояния между кластерами практически совпадают в каждой из рассмотренных выборок, следовательно, обучающая и тестовая выборки репрезентативны/

Таблица 1

Фрагмент обучающей выборки (ланные испытаний ГТЛ)

	Gt_pr	n1_pr	n2_pr	Gv_pr	P2_pr	T4_pr	R_pr	T2_pr	T3_pr		
ĺ	0,193	0,538	0,736	0,418	0,328	0,518	0,153	0,445	0,573		
	0,131	0,348	0,549	0,252	0,205	0,476	0,056	0,254	0,612		
I	0,203	0,548	0,742	0,427	0,336	0,524	0,161	0,451	0,578		
	0,480	0,798	0,879	0,757	0,643	0,758	0,500	0,809	0,763		
	0,150	0,408	0,617	0,304	0,243	0,468	0,085	0,299	0,575		
	0,353	0,712	0,837	0,619	0,505	0,671	0,336	0,668	0,694		
	0,245	0,587	0,767	0,469	0,371	0,551	0,195	0,480	0,602		
	0,733	0,904	0,940	0,928	0,851	0,859	0,774	0,930	0,856		
I	1,015	1,015	1,006	1,036	1,043	1,019	1,056	1,055	1,014		
ſ	0,141	0,379	0,585	0,279	0,225	0,470	0,070	0,275	0,591		
ſ	0,153	0,415	0,626	0,311	0,248	0,469	0,089	0,305	0,572		
	0,562	0,837	0,900	0,825	0,719	0,793	0,595	0,861	0,792		
	0,375	0,731	0,846	0,647	0,532	0,692	0,366	0,700	0,710		
ſ	0,133	0,356	0,559	0,259	0,210	0,474	0,059	0,259	0,606		
ĺ	0,173	0,465	0,674	0,355	0,281	0,479	0,114	0,350	0,563		
ĺ	0,134	0,358	0,561	0,260	0,211	0,474	0,060	0,261	0,605		
ĺ	0,146	0,396	0,605	0,294	0,236	0,468	0,079	0,289	0,580		
ĺ	0.161	0.439	0.649	0.331	0.263	0.472	0.100	0.326	0.566		

экспериментальной выборки (I ... VIII – классы)

Рис. 6. Результаты кластеризации обучающей выборки

Таблица 2

2. Предобработка данных. Важным вопросом, решаемым на этапе предварительной обработки измеренных данных, является оценка однородности обучающей и тестовой выборок. Для этого воспользуемся критерием Фишера – Снедекора [29, 30]. Полученные при этом результаты для различных значений частоты вращения n_{1np} , приведены в табл. 2. Анализ этих результатов показывает, что отношение большей и меньшей дисперсий $\sigma_{max}^2/\sigma_{min}^2$ равно 1,28, что меньше критического значения F, взятого из стандартной таблицы Фишера – Снедекора (в нашем случае, F = 3,44). Следовательно, выборки однородны.

Анализ однородности обучающей и тестовой							
выборок							
Статистические оценки	n _{1пр} (обучающая выборка)	<i>n</i> _{1пр} (тесто- вая вы- борка)					
Среднее	0,6214	0,67					
-		31					
Дисперсия	0,04819	0,06					
		168					
Отношение							
большей дисперсии	1,28						
к меньшей							
F – критическая точка	3.44						

Завершающим этапом статистической обработки данных является их нормирование, которое может быть выполнено по формуле:

$$\widetilde{y}_i = \frac{y_i - y_{i_{\min}}}{y_{i_{\max}} - y_{i_{\min}}},$$
(7)

где \tilde{y}_i – безразмерная величина, находящаяся в диапазоне [0; 1]; y_{imin} и y_{imax} – минимальное и максимальное значение переменной y_i .

3. Выбор архитектуры НС. Для решения задачи идентификации ГТД в нейросетевом базисе в качестве основных архитектур были выбраны персептрон и сеть на радиально-базисных функциях (НС РБФ). Целесообразность применения этих архитектур НС обоснована многочисленными экспериментальными исследованиями, проведенными в процессе решения задачи идентификации модели ГТД.

4. Выбор структуры НС. На данном этапе решения задачи идентификации должна быть выбрана оптимальная структура нейронной сети, т. е. число входов и выходов НС, скрытых слоев и количества нейронов в каждом слое. На рис. 7 показан общий вид многослойной НС прямого распространения (персептрон) с одним скрытым слоем, реализующего статическую многорежимную модель ГТД. На рис. 8 приведена экспериментальная зависимость E = f(N), где E- суммарная квадратичная ошибка обучения HC; N – количество нейронов в скрытом слое (в данном случае количество нейронов во входном слое равно 1, в выходном слое – 8). На этом же рисунке приведена аналогичная зависимость, полученная для HC типа РБФ.

Рис. 7. Многослойный персептрон

На графиках: EPS1 – ошибка обучения HC на базе персептрона; EPS2 – ошибка обучения HC РБФ. В качестве активационных функций нейронов для персептрона использовались сигмоидные функции. Как видно из рис. 6, оптимальными структурами HC являются: для персептрона – структура 1–6–8, (т. е. 1 нейрон – во входном слое; 6 нейронов – в скрытом слое и 8 нейронов – в выходном слое HC); для HC РБФ – 1–16–8, (т. е. 1 нейрон во входном слое; 16 нейронов в радиальном (скрытом) слое и 8 нейронов – в выходном слое). Эти HC – модели позволяют вычислить восемь перечисленных выше параметров ГТД в функции от приведенного расхода топлива G_{t-pr} .

Отметим, что НС РБФ представляет собой двухслойную сеть (рис. 9), в которой первый слой осуществляет нелинейное преобразование входного сигнала $G_{\text{т.пр}}$ без использования настраиваемых весов, а выходной слой объединяет полученные выходы 1-го слоя путем вычисления их линейной взвешенной комбинации.

Выходы НС РБФ описываются уравнениями:

$$Y_{i} = W_{oi} + \sum_{j=1}^{n} W_{ij} f_{j} (G_{T.np.}), \ i = 1, 2, ..., n, \quad (8)$$

где $G_{\text{Т.пр.}}$ – входной сигнал (приведенный расход топлива); W_{ij} – веса связей (i = 1, 2, ..., 8; j = 1, 2, ..., 16); W_{oi} – величина смещения по *i*-му выхо-

ду HC; $f_j(U)$ – активационные функции HC, определяемые в классе гауссовых функций:

$$f_{j}(G_{T.np.}) = \exp\left[-\frac{(G_{T.np.} - C_{j})^{2}}{2\sigma_{j}^{2}}\right], \quad (9)$$

$$(j = 1, 2, ..., 16);$$

 C_j – величина, определяющая положение центра (эталона) *j*-го класса; σ_j – ширина гауссовой функции $f_i(G_{T.np.})$.

Рис. 9. Структура радиальной базисной НС

Настраиваемыми параметрами НС РБФ на рис. 7 являются веса W_{ij} , W_{oi} , (i = 1, 2, ..., 8; j = 1, 2, ..., 16). Так как они линейно связаны с выходами НС и, следовательно, с ошибкой обучения, то их значения могут быть найдены, например, с помощью метода наименьших квадратов. При этом минимизируется суммарная квадратичная ошибка НС:

$$E = \frac{1}{2} \sum_{r=1}^{R} \sum_{i=1}^{n} \left(Y_i^{(r)} - Y_{io}^{(r)} \right)^2, \qquad (10)$$

где $Y_i^{(r)} - i$ -й выход НС в *r*-м эксперименте, т. е. при предъявлении сети *r*-го входного образа $U^{(r)}$; $Y_{io}^{(r)} - i$ -й желаемый выход НС для входа $U^{(r)}$; *R* – число различных экспериментов (размерность обучающей выборки); *n* = 8.

В отличие от ситуации, когда использование градиентных методов настройки параметров персептрона часто приводит лишь к достижению локальных минимумов, здесь нахождение весов связей осуществляется быстрее и точнее [5].

5. Выбор алгоритмов обучения. В качестве алгоритмов обучения НС использовались:

• алгоритм обратного распространения ошибки (Back Propagation);

• квазиньютоновский алгоритм (Quasi Newton);

• алгоритм сопряженных градиентов (Conjugate Gradients) и их комбинации. Анализ полученных результатов показал, что наиболее приемлемым является использование квазиньютоновского алгоритма, который обеспечивает высокую скорость сходимости и точность процесса обучения.

6. Оценка эффективности результатов идентификации. В результате сравнительного анализа точности нейросетевых (персептрон, РБФ) и классического – метод наименьших квадратов (МНК) методов идентификации ГТД по одному параметру – частоте вращения ротора компрессора низкого давления – (рис.10) было установлено, что погрешность идентификации при использовании HC персептрон (DN1_PTR) в 2,6 раза меньше, чем для полиномиальной регрессионной модели 8-го порядка, построенной с помощью МНК (DN1_MNC), а для РБФ (DN1_RBF) – меньше в 1,5 раза. При этом персептрон обеспечивает погрешность идентификации, не превышающую 0,38%; НС РБФ – 0,59%; MHK – 0,99%.

Рис. 10. Анализ погрешности модели ГТД для различных методов идентификации

Результаты анализа точности идентификации с использованием нейросетевых и классического методов для различных параметров ГТД приведены в табл. 3.

Таблица 3

Метод		Относительная погрешность (%)							
иден- тифи- кации	$n_{1_{np}}$	$n_{2_{np}}$	$G_{\scriptscriptstyle{\mathrm{BHP}}}$	$P^*_{2\pi p}$	$T^*_{4\mathrm{np}}$	R _{np}	$T^*_{2 n p}$	$T^*_{3 np}$	
МНК	0,99	0,99	0,89	0,82	0,89	0,89	0,89	0,89	
Пер- септрон	0,38	0,62	0,63	0,58	0,62	0,55	0,63	0,63	
РБФ	0,59	0,74	0,74	0,68	0,74	0,74	0,74	0,74	

Анализ табл. 3 показывает, что значение погрешности идентификации ГТД не превышает: при использовании персептрона – 0,63%; РБФ – 0,74%; МНК – 0,99%.

С целью анализа устойчивости нейронных сетей к изменению входных данных (табл. 1) к ним добавлялась аддитивная помеха по отношению к текущему значению каждого из параметров в виде белого шума с нулевым математическим ожиданием и $\sigma_i = 0,025$. Результаты анализа точности идентификации для отдельных параметров ГТД в условиях действия шума показаны в табл. 4.

Таблица	4
(0/)	

метод	Относительная погрешность (%)							
иден-	n.	n.	G	\boldsymbol{D}^*	T^*	R	T^*	T^*
тифи-	· · I _{np}	2 _{np}		1 2пр	1 4пр	пр	1 _{2пр}	1 _{3пр}
кации								
МНК	2,47	2,14	1,75	1,95	2,49	1,93	2,13	2,14
Персеп-	0.65	0.69	0 72	0.78	0.83	0.84	0.72	0.72
трон	0,05	0,08	0,72	0,78	0,85	0,04	0,75	0,75
РБФ	0,78	0,85	0,85	0,84	0,85	0,84	0,84	0,86

Рис. 11. Погрешность модели ГТД для нейросетевых и классического методов в условиях действия шума

Графики значений погрешности частоты вращения ротора компрессора высокого давления $(n_{2_{m}})$ и температуры газов за турбиной

 (T^*_{4np}) показаны, соответственно, на рис. 11 и рис. 12.

Рис.12. Погрешность модели ГТД для нейросетевых и классического методов в условиях действия шума

На основании сравнительного анализа результатов идентификации ГТД с использованием нейросетевых и классического методов можно сделать следующие выводы:

1. Нейронные сети решают задачу идентификации точнее классических методов: погрешность идентификации на выходе НС типа персептрон в 1,6 раза меньше, чем у регрессионной модели, полученной с помощью МНК для рассмотренного диапазона изменения режимов работы двигателя, начиная от малого газа до форсажа.

2. Погрешность идентификации статической многорежимной модели ГТД с помощью персептрона не превысила 0,63%; для НС РБФ – 0,74%, в то время как для классического метода (МНК) она составляет около 1% в рассмотренном диапазоне изменения режимов работы ГТД.

3. Нейросетевые методы более робастны к внешним возмущениям: для уровня шума $\sigma =$ = 0,025 погрешность идентификации ГТД при использовании персептрона возросла с 0,63 до 0,84%; для НС РБФ с 0,74 до 0,86%, а для метода наименьших квадратов – с 0,99 до 2,49%.

ВОССТАНОВЛЕНИЕ ИНФОРМАЦИИ С ИСПОЛЬЗОВАНИЕМ ТЕХНОЛОГИИ НЕЙРОННЫХ СЕТЕЙ

Ниже подробно остановимся на решении задачи восстановления информации с использованием НС. В качестве НС был выбран персептрон, имеющий структуру: 3–6–4; В качестве алгоритма обучения – метод сопряженных градиентов.

Проведем анализ вычислительных затрат нейросетевого алгоритма реализации ММ ГТД на базе микропроцессорного контроллера STG Thompson ST10F269 и нейрочипа Л1879BM1 NM6403. Их технические характеристики приведены в табл. 5.

Из табл. 5 видно, что микроконтроллеры имеют одинаковые тактовые частоты, но операции умножения и деления выполняются ими за различные интервалы времени. Это связано с разными архитектурами микроконтроллеров. Так, Л1879ВМ1 построен на основе RISC – архитектуры, что подразумевает выполнение любой команды за один такт. Вместе с тем, объем его ОЗУ намного меньше, чем у ST10F269.

realing recente Aupukrepherman						
роконтроллеро	В					
ST10F269	Л1879ВМ1					
	(NM6403)					
40 МГц	40 МГц					
25 нс	25 нс					
250 нс	25 нс					
500 нс	25 нс					
16/32	32/64					
10/32	52/04					
12 Кбайт	256 байт					
256 Кбайт	-					
	роконтроллеро ST10F269 40 МГц 25 нс 250 нс 500 нс 16/32 12 Кбайт 256 Кбайт					

Таблица 5 Технические характеристики

Расчет времени работы с памятью

Время обращения к памяти при чтении/записи $T_{\rm ofp}$ рассчитывается следующим образом:

$$T_{\rm ofp} = T_{\rm a} + T_{\rm g} + T_{\rm y},\tag{11}$$

где T_{obp} – время обращения к памяти; T_a – время готовности шины адреса; T_{μ} – время готовности шины данных; T_y – время готовности шины управления;

Для Л1879ВМ1 количество обращений к памяти будет в два раза меньше по сравнению с ST10F269, так как он работает с 64-х разрядной памятью, а ST10F269 – с 32-х разрядной памятью. Таким образом, для ST10F269 при работе с памятью необходимы три такта:

- запись из регистра в память;
- запись данных в регистр данных;
- установка управляющего слова.

Согласно (11), имеем:

$$T_{\text{ofp}} = 25 + 25 + 25 = 75$$
 (Hc).

Расчет объема данных для хранения нейронной сети

Размер памяти, необходимый для HC в ОЗУ, вычисляется следующим образом:

$$V = \left(\sum_{i=1}^{3} N_i + N_c + \sum_{i=1}^{2} N_i N_{i+1}\right) U, \quad (12)$$

где N_i – количество нейронов в *i*-м слое HC; N_c –

количество слоев HC;
$$\sum_{i=1}^{2} N_i \cdot N_{i+1}$$
 – количество

весовых коэффициентов HC; *U* – число разрядов при записи смещения нейрона (4 байт).

Тогда для HC, имеющей структуру (3–6–4), согласно (12) получим:

$$V = ((3+6+4)+3+(3\cdot 6+6\cdot 4))\cdot 4 = 232$$
 байт.

Расчет количества выполняемых операций

В процессе работы HC выполняется ряд математических (сложение, умножение, деление) и логических (сравнение) операций.

При этом вычисляется взвешенная сумма входов нейрона, к которой добавляется смещение. Полученный результат подается на функцию активации нейрона. В качестве последней в данном случае выбирается рациональная сигмоида: z = f(x), вычисляемая по формуле [5, 31]:

$$z = \frac{x}{|x| + c},\tag{13}$$

где c – крутизна сигмоидной функции, при расчетах принималось c = 1.

При этом, если на нейропроцессоре Л1879ВМ1 функции активации нейронов реализуются аппаратно, то на микроконтроллере ST10F269 они выполняются программно. Для рациональной сигмоиды (13) получим 2 операции: сложения, деления. Всего в процессе работы НС будет выполнено следующее количество операций:

$$OS = N_1 + \sum_{i=1}^{2} N_i \cdot N_{i+1} + \sum_{i=1}^{3} N_i , \qquad (14)$$

$$OU = N_1 + \sum_{i=1}^{2} N_i \cdot N_{i+1} + \sum_{i=1}^{3} N_i , \qquad (15)$$

$$Tf = \sum_{i=2}^{3} N_i , \qquad (16)$$

где OS – число операций сложения; OU – число операций умножения; Tf – число функций активации; N_i – количество нейронов в *i*-м слое HC.

Тогда для рассмотренной выше структуры HC согласно (14) – (16), имеем:

 $OS = 3 + (3 \cdot 6 + 6 \cdot 4) + (3 + 6 + 4) = 58;$ $OU = 3 + (3 \cdot 6 + 6 \cdot 4) + (3 + 6 + 4) = 58;$ Tf = 10.

Считая, что все операции в микроконтроллере Л1879ВМ1 выполняются за 1 такт, включая функцию активации нейрона, а также учитывая разрядность, скорость обращения к памяти и параллельность выполнения алгоритма, имеем общее количество операций:

$$O_{JI1879BM1} = 58/2 + 58/2 + 3/2 + 6/2 + 4/2 = 64$$

Расчет времени реализации НС

Для микроконтроллера ST10F269 время выполнения всех операций (с учетом времени выборки данных из памяти) можно вычислить как

$$T_{ST10F269} = Od \cdot td + OS \cdot tp + OU \cdot t_m + Tf \cdot t_p + V_{nn} \cdot t_{mem}, \qquad (17)$$

где t_d — время выполнения команды деления; t_p — время выполнения команды сложения; t_m время выполнения команды умножения; t_{mem} время выполнения выборки данных из памяти.

Тогда, согласно (5.7), для ST10F269 получим:

$$T_{\text{ST10F269}} = 10.500 + 58.25 + 58.250 + 10.25 + + 160.25 = 25200 = 25.2 \text{ (MKC)}.$$

Учитывая разную разрядность процессора (16 разрядов) и операндов (32 разряда), время вычисления увеличится в два раза:

 $T_{ST10F269} = 50400 = 50,4$ (MKC).

Для нейропроцессора Л1879ВМ1 это время составит:

T _{Л1879ВМ1} = $64 \cdot 25 + 80 \cdot 25 = 3600 = 3,6$ мкс.

Отсюда видно, что специализированный процессор Л1879ВМ1 выполняет реализацию HC в 14 раз быстрее вычислителя на базе STG Thompson ST10F269.

Результаты сравнительного анализа нейросетевого метода с аналитической (кусочно-линейной) моделью ГТД, а также полиномиальной регрессионной моделью, реализованной на основе метода наименьших квадратов полином (девятого порядка), приведены в табл. 6.

Таблица 6

Сравнительный анализ различных способов решения задачи идентификации ГТД

решения зада и идентификации г гд							
Модели	Время вычис-	Объем зани- маемой	Погрешность вы- числения (%)				
	(мкс)	памяти (байт)	n_1	n_2	T_4^*	P_2^*	
Кусочно-							
линейная	46,3	3192	3,71	1,57	2,88	6,32	
модель							
Поли- номиаль- ная мо- дель	51,4	486	1,14	0,97	1,56	2,61	
Ней- росете- вая мо- дель	3,6	394	0,75	0,68	0,81	0,76	

Данные, приведенные в табл. 6, получены путем сравнения реальных данных летных испытаний, с данными, вычисленными по указанным выше моделям двигателя и соответствуют изменению режимов его работы от «малого газа» до режима «максимал».

Анализ табл. 6 показывает, что нейросетевая модель ГТД эффективнее решает задачу идентификации многорежимного ГТД: максимальная погрешность идентификации не превысила 0,81%, что в 7,8 раза меньше максимальной погрешности кусочно-линейной модели и в 3 раза меньше максимальной погрешности полиномиальной модели ГТД. Таким образом, полученная нейросетевая модель может эффективно использоваться в составе БСКД ЭСУ – 27 для восстановления информации при отказах датчиков.

ВОССТАНОВЛЕНИЕ ИНФОРМАЦИИ ПРИ ОТКАЗАХ ДАТЧИКОВ С ИСПОЛЬЗОВАНИЕМ АВТОАССОЦИАТИВНОЙ НЕЙРОННОЙ СЕТИ

Другим альтернативным подходом к восстановлению информации является использование для этих целей автоассоциативной нейронной сети (АНС), обладающей свойством сжатия и последующего восстановления информации.

Известны работы [31–33], в которых показана возможность применения АНС для восстановления измеренной информации о термогазодинамических параметрах ГТД. Вместе с тем, в этих работах отсутствуют методики их построения и рекомендации по выбору структуры и алгоритмов обучения АНС. Ниже исследуются особенности формализации и решения задачи восстановления информации при отказах датчиков ГТД с помощью АНС и бортовой реализации соответствующих алгоритмов.

Будем рассматривать следующую задачу: требуется построить АНС, обеспечивающую контроль и восстановление информации (в случае возникновения отказов) о техническом состоянии ГТД при наличии пяти штатных датчиков термогазодинамических параметров n_1 , n_2 , $G_{\rm T}$, P_2^* , T_4

На рис. 3 приведена архитектура автоассоциативной нейронной сети, состоящей из 3-х слоев. При этом АНС осуществляет зеркальное отображение вектора входных данных на самого себя. Сжатие информации осуществляется в скрытом слое НС, называемым «орлом», восстановление информации осуществляется в выходном слое. Принципиальная возможность использования сжимающего отображения составляет основу метода главных компонент. Архитектура АНС показана на рис. 13.

Рис. 13. Архитектура АНС

Ключевым моментом в выборе структуры АНС является определение оптимального количества нейронов в «горле». На рис. 14 приведен график зависимости ошибки восстановления информации сетью при отказе одного из датчиков (в данном случае, датчика частоты вращения n_1) от количества нейронов в горле АНС.

Рис. 14. Выбор оптимальной структуры АНС

По оси абсцисс на рис. 14 отложен относительный размер горла – отношение количества нейронов в горле к количеству входных/выходных нейронов (5 нейронов). Как видно из рисунка, оптимальный размер горла в данном случае равен 0,8, т. е. количество нейронов в горле (скрытом слое АНС) должно равняться четырем.

Данные для обучения АНС были получены в процессе летных испытаний авиационного двигателя в широком диапазоне изменения режимов его работы (начиная от малого газа до форсажного режима).

Наряду с вопросом выбора структуры АНС, важным этапом является этап восстановления информации по результатам функционирования этой нейронной сети.

В данной работе используется подход, предложенный в [31] и изображенный в виде функциональной схемы на рис.15.

Сигналы с датчиков одновременно поступают в стек и систему допускового контроля, осуществляющую контроль измеренных значений с датчиков. Если сигналы с датчиков находятся в поле допуска, то они беспрепятственно передаются далее в систему управления, которая осуществляет управление исполнительными механизмами (ИМ), воздействующими на ГТД. В случае, если какой-либо из сигналов датчиков выходит за поле допуска, то система допускового контроля извлекает последнее значение этого сигнала из стека и передает его на соответствующий вход АНС, которая восстанавливает информацию и далее передает ее в САУ авиационным двигателем.

Рис. 15. Функциональная схема восстановления информации на основе АНС

Результаты восстановления информации АНС в случае отказа датчика P_2^* приведены в табл. 7.

Таблица 7

Струк- тура	Погрешность восстановления пара- метров ГТД, в %						
AHC	G_T	n_1	n_2	P_2^*	T_4^*		
5 - 4 - 5	0,33	0,31	0,24	0,45	0,38		

При отказе других датчиков погрешность восстановления не превышает значений приведенных в табл. 7.

Анализ полученных результатов показывает высокую эффективность применения АНС в процессе восстановления информации.

Результаты восстановления информации в случае двойного (кратных) отказов датчиков n_1 и n_2 приведены в табл. 8.

Таблица 8

Струк-	Погрешность восстановления пара- метров ГТЛ. в %					
AHC	G_T	<i>n</i> ₁	n_2	P_2^*	T_4^*	
5 - 4 - 5	0,56	0,45	0,44	0,52	0,58	

Анализ результатов, приведенных в табл. 8, показывает, что, несмотря на то, что точность восстановления информации, в случае двойных отказов датчиков ухудшается, применение АНС обеспечивает удовлетворительное качество восстановления информации, т. е. сохранение работоспособности измерительных каналов САУ ГТД. Проведем анализ требуемых вычислительных затрат, необходимых для реализации нейросетевой модели ГТД на базе микропроцессорного контроллера STG Thompson ST10F269 и нейрочипа Л1879BM1 NM6403 (см. табл. 5).

Время обращения к памяти (чтение/запись) рассчитывается аналогично по (11).

Размер памяти ОЗУ, необходимый для вычислений с помощью HC, вычисляется по (5.2):

$$V = ((5+4+5)+3+(5\cdot4+4\cdot5))\cdot 4 = 228$$
(байт).

В процессе вычисления выходов HC будет выполнено следующее количество операций, вычисляемых на основании формул (14–16):

$$OS = 3 + (5 \cdot 4 + 4 \cdot 5) + (5 + 4 + 5) = 57;$$

$$OU = 3 + (5 \cdot 4 + 4 \cdot 5) + (5 + 4 + 5) = 57;$$

$$Tf = 9.$$

Считая, что разрядность операндов равна 32, а разрядность процессора Л1879ВМ1 равна 64, а также с учетом того, что все операции им выполняются за 1 такт, включая вычисление функции активации нейрона (рациональная сигмоида), для выполнения алгоритма необходимо количество выполняемых операций поделить на два:

$$O_{J1879BM1} = 57/2 + 572 + 5/2 + 4/2 + 5/2 = 58.$$

Для микроконтроллера ST10F269 время выполнения всех операций на основании (7) составит

$$T_{ST10F269} = 9.500 + 57.25 + 57.250 + 9.25 +$$

+ 160.25 = 24400 нс = 24.4 (мкс).

Учитывая разрядность процессора (16 разрядов) и разрядность операндов (32 разряда), время выполнения увеличится в два раза:

 $T_{ST10F269} = 48,8$ (мкс).

Для Л1879BM1 это время составит:

 $T_{\text{Л1879BM1}} = 58.25 + 80.25 =$ = 3450 (нс) = 3,4 (мкс).

Отсюда следует, что специализированный микроконтроллер выполняет реализацию HC в 14 раз быстрее бортового вычислителя на базе STG Thompson ST10F269.

Таким образом, использование АНС в БСКД для восстановления информации позволяет обеспечить отказоустойчивость измерительных каналов систем управления ГТД.

Основным преимуществом применения нейронных сетей в рамках БСКД является возможность обучения и дообучения в режиме реального времени, с учетом индивидуальных характеристик конкретного авиационного двигателя.

выводы

1. На основании проведенных исследований сформулированы требования к нейросетевой системе контроля и диагностики технического состояния ГТД, позволяющей использовать, наряду с количественными математическими моделями двигателя, качественную и экспериментальную информацию, полученную в ходе стендовых и летных испытаний ГТД.

2. Рассмотрены особенности реализации нейросетевых алгоритмов восстановления информации в случае отказа штатных датчиков в составе бортовой системы контроля и диагностики двигателя (БСКД). На примере БСКД ТВВД Д – 27 показано, что:

• реализация нейросетевой многорежимной модели ГТД обеспечивает уменьшение погрешности вычисления термогазодинамических параметров ГТД в 2,3÷7,8 раза по сравнению с кусочно-линейной моделью ГТД и в 1.4÷3.4 раза по сравнению с полиномиальной моделью 9-го порядка; при этом за счет сокращения числа операций умножения обеспечивается выигрыш по сравнению с кусочно-линейной и полиномиальной моделями при использовании вычислителя STG Thompson ST10F269 соответственно: по времени вычислений в 12,8 и в 14,2 раза; по требуемому объему памяти в 8,1 и 1,2 раза (при использовании нейропроцессора Л1879ВМ1 – время вычисления НС дополнительно уменьшается в 2 раза);

• восстановление информации при отказе датчиков с помощью автоассоциативной нейронной сети обеспечивает погрешность восстановления данных не более 0,45% в случае одиночных отказов и не более 0,58% в случае двойных отказов; при этом время вычисления 1 цикла восстановления данных при использовании пяти штатных датчиков составляет 48,8 мкс для вычислителя STG Thompson ST10F269 и 3,4 мкс для специализированного нейропроцессора Л1879BM1, что удовлетворяет требованиям бортовой реализации в составе перспективной БСКД.

СПИСОК ЛИТЕРАТУРЫ

1. Васильев, С. Н. Интеллектное управление динамическими системами / С. Н. Васильев. М. : Физматлит, 2000. 352 с.

2. Котенко, П. С. Системы технического обслуживания и автоматизированного контроля летательных аппаратов : учеб. пособие / П. С. Котенко. Уфа : УГАТУ, 2000. 212 с. 3. Федунов, Б. Е. Проблемы разработки бортовых оперативно-советующих экспертных систем для антропоцентрических объектов / Б. Е. Федунов // Изв. РАН. Теория и системы управления. М. : Наука, 1996. № 5. С. 147–159.

4. Васильев, В. И. Автоматический контроль и диагностика систем управления силовыми установками летательных аппаратов / В. И. Васильев, Ю. М. Гусев, А. И. Иванов. М.: Машиностроение, 1989. 240 с.

5. Головко, В. А. Нейронные сети: обучение, организация и применение / В. А. Головко. М. : Радиотехника, 2001. 256 с.

6. Дубровин, В. И. Интеллектуальные средства диагностики и прогнозирования надежности авиадвигателей / В. И. Дубровин, С. А. Субботин, А. В. Богуслаев. Запорожье : Мотор-Сич, 2003. 279 с.

7. Леонов, А. А. Синтез нейронной сети для решения задачи идентификации состояния объекта / А. А. Леонов, М. А. Леонов, Ю. Н. Федосеев // Нейроинформатика. М. :МИФИ, 2000. Т.1. С. 100–109.

8. Жернаков, С. В. Параметрическая идентификация ГТД гибридным ансамблем нейросетей / С. В. Жернаков // Нейрокомпьютеры : разработка и применение. М. : Радиотехника, 2001. № 4–5. С. 31– 35.

9. Жернаков, С. В. Распознавание параметров авиационного двигателя нейросетями / С. В. Жернаков //Автоматизация и современные технологии. М. :Машиностроение, 2003. № 4. С.29–31.

10. Жернаков, С. В. Идентификация параметров авиационного двигателя на основе нейронных сетей / С. В. Жернаков // Информационные технологии. М.: Машиностроение, 2003. № 12. С. 31–39.

11. Жернаков, С. В. Идентификация характеристик ГТД на основе технологии нейронных сетей / С. В. Жернаков // Полет. М. : Машиностроение, 2006. № 10. С. 9–15.

12. Жернаков, С. В. Идентификация характеристик газотурбинного двигателя на основе нейронных сетей / С. В. Жернаков // Приборы и системы. Управление. Контроль. Диагностика. М. : Научтехлитиздат, 2006. № 11. С. 49–55.

13. Цыпкин, Я. З. Идентификация систем / Я. З. Цыпкин. М. : Наука, 1995. 385 с.

14. **Куликов, Г. Г.** Марковские модели сложных динамических систем: идентификация, моделирование и контроль состояния / Г. Г. Куликов, П. Д. Флеминг, Т. В. Брейкин. Уфа : УГАТУ, 1998. 104 с.

15. **Нечаев, Ю. И.** Синтез самоорганизующейся нейронной сети в задаче идентификации состояний сложного динамического объекта / Ю. И. Нечаев, А. Б. Дегтярев, А. И. Кирюхин // Нейроинформатика. М. : МИФИ, 2001. Т. 2. С. 169–177.

16. **Осовский, С.** Нейронные сети для обработки информации / С. Осовский. М. :Финансы и статистика, 2002. 344с.

17. Яковенко, А. В. Идентификация математической модели движения самолета на основе нейросетевого подхода / А. В. Яковенко // Нейроинформатика. М. : МИФИ, 2002. Т. 2. С. 158–164.

18. Arkov, V. Y. Aircraft Engine Condition Monitorings: Stochastic Identification and Neural Networks / V. Y. Arkov, V. C. Patel, G. G. Kulikov // Artifical Neural Networks, IEEE Conference Publication. 1994. No. 440. P. 295–299.

19. **Dunia, R.** Subspace Approach to Multidimensional Fault Identification and Reconstruction / R. Dunia //AIChE. Journal. 1998. Vol. 44. P. 927–943.

20. **Dunia, R.** Sensor fault identification and reconstructi on using principalcomponent analysis / R. Dunia // Proc. of 13th IFAC Triennial World Congress, 1998. Vol. 2. P. 259–264.

21. **Garsia**, **A.** On the relationship between observer and parameter identification based approaches to fault detection / A. Garsia, P. M. Frank // The 3th IFAC World Congress, 1996. P. 25–29.

22. **Goel, S.** Identification of parameter coupling in turbine design using neural network / S. Goel // Journal of propulsion and power. 1996. Vol. 13. No. 3. P. 503–508.

23. **Habib, S.** System identification using time dependent neural networks / S. Habib // Proc. of the AIAA Guidance Navigation and Control Conference. 1996. P. 1–8.

24. **Napolitano, M.** Sensor failure detection, identification and accomodation using on-line neural architectures / M. Napolitano // AIAA 94 – 3598, AIAA Guidance Navigation and Control Conference. 1994. P. 345–358.

25. Narendra, K. S. Identification and control of dynamic systems Using neural networks / K. S. Narendra // IEEE Trans. on Nenral Networks. Vol. 1. P. 4–27.

26. Narendra, K. S. Identification and control of dynamical systems using nenral netwarks / K. S. Narendra // IEEE Trans. Nenral Networks, 1990. Vol. 1. No. 1. P. 4–27.

27. Nells, O. Neuronale netze zur identification nichtlinearer dynamischer systeme / O. Nells, S. Ernst, R. Isermann. Springer, 1997. 125 p.

28. **Ren, X.** A modified neural network for dynamical system identification and control / X. Ren // Proc. 14th World Congress of IFAC, 1999. Vol. 9. No. 5. P. 376–388.

29. Айвазян, С. А. Прикладная статистика. Классификация и снижение размерности / С. А. Айвазян, И. С. Енюков., Л. Д. Мешалкин. М. : Финансы и статистика, 1989. 393 с.

30. Айвазян, С. А. Прикладная статистика. Исследование зависимостей / С. А. Айвазян, И. С. Енюков, Л. Д. Мешалкин. М. : Финансы и статистика, 1985. 385 с.

31. Валеев, С. С. Отказоустойчивые системы управления сложными динамическими объектами с использованием искусственных нейронных сетей / С. С. Валеев, В. И. Васильев, Б. Г. Ильясов // Нейрокомпьютеры: разработка, применение. 2000. № 1. С. 32–35.

32. Мерил У. К. Обнаружение отказов датчиков ГТД за счет аналитической избыточности / У. К. Мерил //Аэрокосмическая техника. 2004. № 6. С. 28–41.

33. **Modern** Problems of Design of Aeroengine Control Systems / Eds: Sun Jianguo, V. I. Vasilyev, B. G. Ilyasov, Beijing, China, 2004.

ОБ АВТОРАХ

Васильев Владимир Иванович, проф., зав. каф. выч. техники и защиты информации. Дипл. инж. по пром. электронике (УГАТУ, 1970). Д-р техн. наук по системному анализу и автоматич. управлению (ЦИАМ, 1990). Иссл. в обл. многомерных многофункциональных и интеллектуальных систем.

Жернаков Сергей Владимирович, зав. каф. инф.-изм. техники. Дипл. инж. по пром. электронике (УГАТУ, 1984). Д-р техн. наук по системн. анализу, управлению и обработке информации (УГАТУ, 2005). Иссл. в обл. интеллектуальных систем.

Муслухов Ильдар Ирекович, Дипл. инж. по вычислительной технике (УГАТУ, 2005). Канд. техн. наук по системн. анализу, управлению и обработке информации (УГАТУ, 2007). Иссл. в обл. интеллектуальных систем.