Вестник УГАС

МАШИНОСТРОЕНИЕ

УДК 539.214

В. М. Грешнов, Р. И. Шайхутдинов

ФИЗИКО-ФЕНОМЕНОЛОГИЧЕСКАЯ МОДЕЛЬ ДИСЛОКАЦИОННОЙ ПОЛЗУЧЕСТИ МЕТАЛЛОВ

В рамках ранее разработанной физико-математической теории вязкопластичности выведена, как следствие, физикофеноменологическая модель дислокационной ползучести металлов с термомеханической активацией скольжения дислокаций. Модель решает проблему классической математической теории ползучести – последовательно описывает неустановившуюся ползучесть. Пластичность; ползучесть; структурно-феноменологический подход

Расчеты деталей и конструкций на ползучесть являются важной составной частью создания изделий авиационно-ракетной и химической промышленности на этапе проектирования. Современные инженерные расчетные методы базируются на математической теории ползучести (технические теории течения, упрочнения, старения и наследственности), основы которой были разработаны в 60-70-х гг. прошлого века [1, 2]. Проблема повышения надежности и безопасности функционирования деталей и конструкций, работающих в условиях термомеханических нагрузок, связана с разработкой теоретических основ нестационарной ползучести, протекающей в условиях изменяющихся механических нагрузок и температуры. Немаловажной является задача сокращения материальных и временных затрат на проведение базового эксперимента по определению материальных констант и функций, необходимых для теоретического анализа при конкретных диапазонах термомеханических параметров нагружения [3, 4].

Независимо от математической (феноменологической) теории ползучести, которая составляет теоретические основы инженерных методов расчета, многие годы разрабатываются одноосные микроструктурные (физические) модели ползучести [5, 6]. Разными авторами предложено для различных классов металлических материалов несколько моделей, которые отличаются исходными предположениями и содержат большое количество параметров подгонки. Поэтому их еще невозможно использовать при решении практических задач.

В работе излагается физико-феноменологическая модель ползучести металлов, которая представляет собой одно из следствий физикоматематической теории вязкопластичности и которая решает отмеченную проблему классической теории.

1. ФИЗИКО-ФЕНОМЕНОЛОГИЧЕСКАЯ МОДЕЛЬ ПОЛЗУЧЕСТИ МЕТАЛЛОВ

Проблема ползучести – это проблема вязкопластичности. Новая физико-математическая теория вязкопластичности изложена в [7]. Основной особенностью теории является ее синтетический характер: теория построена на стыке физики и механики необратимых деформаций.

Обобщенное и скалярное определяющие уравнения теории имеют вид:

$$d\varepsilon_{ij(g)} = \frac{3}{2} \frac{d\varepsilon_{(g)}}{\sigma_{(g)}^{T} + d\sigma_{(g)}^{u} - d\sigma_{(g)}^{r}} \left(s_{ij(g)}^{T} + ds_{ij(g)}^{u} - ds_{ij(g)}^{r}\right),$$
(1)

$$\sigma_{(g)} = \sigma_{(g)}^{T} + d\sigma_{(g)}^{u} - d\sigma_{(g)}^{r}, \qquad (2)$$

$$\sigma_{(g)}^{T} = \left[\beta mGb - \frac{kT_{(g)}m}{b^{2}}\ln\frac{\dot{\varepsilon}_{*}b\sqrt{\rho_{s(g-1)}}}{\dot{\varepsilon}_{(g)}}\right]\sqrt{\rho_{s(g-1)}},$$
(3)

$$d\sigma_{(g)}^{u} = \frac{\beta m G b}{2\sqrt{\rho_{s(g)}}b\lambda} d\varepsilon_{(g)}, \qquad (4)$$

$$d\sigma_{(g)}^{r} = \left\{ \frac{\beta m G b^{2} \rho_{s(g)}^{2} \nu_{D}}{2\dot{\epsilon}} \exp\left(-\frac{\beta G b^{3} - \sigma_{(g-1)} b^{2} / \sqrt{\rho_{so}}}{kT_{(g)}} + \frac{m k T_{(g)}}{2b^{3} \lambda \sqrt{\rho_{s(g)}}} \left(1 + \ln \frac{\dot{\epsilon}_{*} b \sqrt{\rho_{s(g)}}}{\dot{\epsilon}_{(g)}}\right) \left[1 - \frac{\rho_{s(g)}^{2} b^{2} \nu_{D} \sqrt{\rho_{s(g)}}}{\dot{\epsilon}_{(g)}} \times \exp\left(-\frac{\beta G b^{3} - \sigma_{(g-1)} b^{2} / m \sqrt{\rho_{so}}}{kT_{(g)}}\right) \right] d\epsilon_{(g)}^{*},$$
(5)

где g = 1, 2,..., n – номер расчетного шага при пошаговом расчете деформации, на котором интенсивность приращения необратимой деформации принимает значение $d\varepsilon_{(g)}$.

Контактная информация: 8(347)273-07-27

Теория содержит также уравнение эволюции действительного структурного параметра – скалярной плотности неподвижных дислокаций – имеющего вид

$$d\rho_{s(g)} = \frac{1}{b\lambda} - \frac{\rho_{s(g-1)}^{\frac{3}{2}} \nu_D b}{\dot{\epsilon}_{(g)}} \times \\ \times \exp\left(-\frac{\beta G b^3 - \sigma_{(g-1)} b^2 / m \sqrt{\rho_{so}}}{k T_{(g)}}\right) d\epsilon_{(g)}.$$
(6)

Можно полагать, что на основе приведенной модели вязкопластичности могут быть получены основные уравнения дислокационной ползучести, контролируемой термодинамически активированным скольжением дислокаций.

С целью обеспечения возможности учета истории нагружения модель ползучести, как и модель пластичности, будем строить в конечных приращениях.

Для вывода уравнений, описывающих кривую ползучести $\varepsilon^{c}(t)$, будем считать, что на произвольном расчетном шаге g, характеризуемым малым конечным приращением времени $dt_{(g)}$, $\dot{\varepsilon}_{(g)}^{c}$ и $T_{(g)}$ из-за малости $dt_{(g)}$ существенно не успевают измениться, то есть $\dot{\varepsilon}_{(g)}^{c}$, $T_{(g)} = \text{const}$, но могут принимать различные значения на разных расчетных шагах g. Мгновенную на произвольном расчетном шаге g интенсивность скорости деформации ползучести при заданных σ и T определим из уравнения (3), как

$$\dot{\varepsilon}_{(g)}^{c} = \dot{\varepsilon}_{*} b \sqrt{\rho_{s(g-1)}} \times \\ \times \exp\left(-\frac{\beta(T)G(T)b^{3} - \sigma^{c}b^{2} / m \sqrt{\rho_{s(g-1)}}}{kT}\right), \quad (7)$$

где верхний индекс "*c*", здесь и далее, обозначает макрохарактеристики ползучести.

Для введения в модель основной переменной – времени, в уравнение (6) подставим $d\varepsilon_{(g)}^{c} = \dot{\varepsilon}_{(g)}^{c} \cdot dt_{(g)}$ и изменение плотности неподвижных дислокаций при ползучести под действием приложенной интенсивности напряжения $\sigma_{(g)}^{c}$ на шаге *g* за время $dt_{(g)}$ найдется, как

$$d\rho_{s(g)} = \frac{\dot{\varepsilon}_{(g)}^{c}}{b\lambda} - (\rho_{s(g-1)})^{3/2} \nu_{D} b \times \\ \times \exp\left[\left(-\frac{\beta(T)G(T)b^{3} - \sigma_{(g)}^{c}b^{2} / m\sqrt{\rho_{s(g-1)}}}{kT_{(g)}}\right)\right] dt_{(g)}.$$
(8)

Интенсивность приращения деформации ползучести за $dt_{(g)}$ с учетом (7), определим по уравнению

$$d\varepsilon_{(g)}^{c} = \dot{\varepsilon}_{(g)}^{c} \cdot dt_{(g)} \,. \tag{9}$$

Интенсивность деформации ползучести, накопленную за *g* шагов нагружения, найдем по формуле

$$\boldsymbol{\varepsilon}_{(g)}^{c} = \boldsymbol{\varepsilon}_{(g-1)}^{c} + d\boldsymbol{\varepsilon}_{(g)}^{c}, \qquad (10)$$

а время нахождения образца под нагрузкой за *g* расчетных шагов – по формуле

$$t_{(g)} = t_{(g-1)} + dt_{(g)} \,. \tag{11}$$

Найденная по (10) $\varepsilon_{(g)}^{c}$ ставится в соответствие времени $t_{(g)}$ по (11).

Далее, с учетом определенного по (8) $d\rho_{s(g)}$, находится плотность дислокаций на произвольном расчетном шаге *g*, как

$$\rho_{s(g)} = \rho_{s(g-1)} + d\rho_{s(g)}.$$
 (12)

Определенное по (12) значение $\rho_{s(g)}$ подставляется в (7) и находится интенсивность скорости деформации на расчетном шаге (g + 1) и расчетный цикл, включающий формулы (8)–(12), повторяется. За g = k расчетных шагов (циклов) строится теоретическая кривая ползучести $\varepsilon^{c}(t)$. Если в какой-то момент времени $t_{(g)}$ режимы ползучести изменятся, то есть T, $\sigma^{c} =$ var, то на соответствующем расчетном шаге g в вышеприведенные формулы надо подставлять их новые значения.

При расчете кривых ползучести, как, впрочем, и диаграмм деформирования, малые приращения времени $dt_{(g)}$ и интенсивности приращения деформации $d\varepsilon_{(g)}$ необходимо задавать из условия

$$dt_{(g)} > t_h, dt_{(g)} = d\varepsilon_{(g)}/\dot{\varepsilon}_{(g)},$$

$$t_h = v_{so}^{-1} = \left(v_D b \sqrt{\rho_s}\right)^{-1} \exp\left(\frac{\beta G b^3 - \sigma b^2 / m \sqrt{\rho_s}}{kT}\right), (13)$$

где t_h – характерное время процесса. Если $dt_{(g)} = \frac{d\varepsilon_{(g)}}{\dot{\varepsilon}_{(g)}} < t_h$, то дислокации за это время не успевают преодолеть барьеры и ползучесть не будет наблюдаться. Точно также, если $\dot{\varepsilon}_{(g)} = \frac{d\varepsilon_{(g)}}{dt_{(g)}} > t_h^{-1}$, то процесс возврата не успеет произойти и деформация, несмотря на высокую

произоити и деформация, несмотря на высокую температуру, будет холодной (определять ее будет процесс упрочнения).

С научной и практической точек зрения большой интерес представляет установившаяся (стационарная) ползучесть, протекающая при *T*, $\sigma^c = \text{const} \ c$ минимальной скоростью деформации $\dot{\epsilon}_{\min}^c = d\epsilon^c/dt = \text{const}$. В физике ползучести считается, что необходимым условием установившейся ползучести является условие стационарности структуры [5, 6]. В излагаемой модели ползучести это условие имеет вид $d\rho_s / dt = 0$. Подставив его в (8), найдем ϵ_{\min}^c , с которой протекает установившаяся ползучесть, как^{*}

$$\dot{\varepsilon}_{\min}^{c} = \lambda \rho_{s}^{3/2} \nu_{D} b^{2} \times \\ \times \exp\left(-\frac{\beta(T)G(T)b^{3} - \sigma^{c}b^{2}/m\sqrt{\rho_{s}}}{kT}\right).$$
(14)

Приравняв (7) и (14), найдем уравнение для определения стационарной плотности дислокаций ρ_s^c на установившейся стадии ползучести в виде

$$\lambda \rho_s^c b = C = \text{const} \,. \tag{15}$$

Если $\dot{\epsilon}_* = v_D$, как это принято в данной работе, то *C* в (15) по порядку величины равно 1,0. Если учесть, что v_D для разных металлов имеет значение $10^{12} - 10^{13} \text{ c}^{-1}$, то *C* может принимать значения от 0,1 до 1.

Выражение (15) является математической формулировкой нового (не известного ранее) закона стационарной дислокационной ползучести с термомеханически активированным скольжением дислокаций: *при установившейся дислокационной ползучести металлов произведение трех скалярных характеристик дислокационной структуры длины свободного пробега дислокаций* λ , *плотности дислокаций* ρ_s и моду*ля вектора Бюргерса дислокаций b* является для *данного металла величиной постоянной*, не за*висящей от* σ^c , *T и накопленной* ε^c .

То, что установившаяся ползучесть протекает в условиях стационарной структуры, предполагали и ранее [5, 6], и в данной работе было принято условие $d\rho_s / dt = 0$. Не тривиальным в (15) является само произведение $\lambda \rho_s^c b$ и независимость его от термомеханических условий, что и оправдывает характеристику (15) как закона.

Закон (15) позволяет:

1. Оценить стационарную плотность дислокаций при установившейся ползучести как

$$\rho_s^c = C/b\lambda \,. \tag{16}$$

2. Найти уравнение для определения минимальной скорости деформации при установившейся ползучести. Это уравнение получается подстановкой (16) в (14) и имеет вид

$$\dot{\boldsymbol{\varepsilon}}_{\min}^{c} = \left(\frac{C^{3}b}{\lambda}\right)^{1/2} \dot{\boldsymbol{\varepsilon}}_{*} \times \\ \times \exp\left(-\frac{\beta(T)G(T)b^{3} - \sigma^{c}b^{2}/m(C/\lambda b)^{1/2}}{kT}\right).$$
(17)

3. Экспериментальными исследованиями влияния деформации ползучести на структуру металлов установлено, что общей закономерностью является формирование к началу установившейся стадии при T, σ^c = const субзеренной структуры. Для оценки среднего линейного размера субзерен предложено эмпирическое соотношение [6]

$$D = 10,5Gb/\sigma^c . \tag{18}$$

Уравнение для оценки среднего линейного размера субзерен в рамках развиваемой теории получим подстановкой (16) в известное в металлофизике соотношение $D = B/\sqrt{\rho}$, где *B* по порядку величины равно 10,0

$$D = B / \sqrt{\rho_s^c} = B / \sqrt{\frac{C}{\lambda b}} .$$
 (19)

Можно показать, что изложенная скалярная физико-феноменологическая модель ползучести (уравнения (7)–(12)) позволяет с использованием ассоциированного закона течения построить технические физико-математические теории ползучести металлов: теорию старения $\sigma^c = \Phi_1(\varepsilon^c, t)$; теорию течения $\sigma^c = \Phi_2(\dot{\varepsilon}^c, t)$; теорию упрочнения $\sigma^c = \Phi_3(\dot{\varepsilon}^c, \varepsilon^c)$ [8]. Покажем это на примере теории старения, которая широко применяется в инженерных расчетах.

В математической теории старения потенциал ползучести берется в виде

$$f_1 = \frac{3}{2} s_{ij}^c s_{ij}^c - \left[\Phi_1(\varepsilon^c, t) \right] = 0. \quad (20)$$

Из (20) следует, что взаимосвязь σ_{ij}^{c} и ε_{ij}^{c} в некоторый момент времени *t* определяется уравнением

$$\varepsilon_{ij}^{c} = \frac{3}{2} \frac{\varepsilon^{c}}{\sigma^{c}} (\sigma_{ij}^{c} - \delta_{ij} \sigma_{o}^{c}) = \frac{3}{2} \frac{\varepsilon^{c}}{\sigma^{c}} s_{ij}^{c}, \qquad (21)$$

^{*}В уравнениях, касающихся установившейся ползучести, индекс «*g*» опущен.

которое дополняется скалярным соотношением $\sigma^{c} = \Phi_{1}(\varepsilon^{c}, t)$.

Зависимости $\sigma^{c} = \Phi_{1}(\varepsilon^{c})$, построенные для различных значений времени t, называются изохронными кривыми ползучести. Они строятся обработкой серии экспериментальных кривых ползучести, полученных при конкретной Т и разных о [8]. В этом случае напряжения и деформации ползучести для конкретного значения времени находятся путем решения начальнокраевой задачи, математическая постановка которой включает уравнения (21) и изохронную кривую ползучести для интересующего времени t, то есть решение эквивалентно решению задачи по деформационной теории пластичности с использованием вместо диаграммы деформирования материала изохронной кривой ползучести для интересующего момента времени.

Изложенная одноосная физико-феноменологическая модель ползучести позволяет получить расчетом необходимое количество кривых ползучести при различных T и σ^c , которые необходимы для построения изохронных кривых.

Построенные таким способом физико-феноменологические технические теории ползучести будут отличаться от феноменологических меньшим объемом эксперимента для получения кривых ползучести при решении практических задач, связанных с расчетом деталей на ползучесть. Однако совершенно очевидно, что эти теории унаследуют основной недостаток математических теорий ползучести – невозможность корректного учета истории нагружения и, следовательно, адекватного описания процесса неустановившейся ползучести.

Проблема ползучести – это проблема вязкопластичности. В физико-математической теории вязкопластичности [7] необратимая деформация не подразделяется на пластическую и деформацию ползучести. Скалярная физико-феноменологическая модель ползучести выведена из скалярной модели вязкопластичности. Поэтому решение задач ползучести в рамках физикоматематической теории эквивалентно решению задач вязкопластичности. Будем называть их задачами физико-математической теории необратимых деформаций.

Следовательно, математическая постановка начально-краевых задач необратимых деформаций должна включать (дополнительно к уравнениям равновесия и кинематическим соотношениям) уравнения (1)–(5). При этом параллельно с определением характеристик напряженнодеформированного состояния, необходимо фиксировать время нахождения материальных частиц под нагрузкой.

Для более точного определения характеристик напряженно-деформированного состояния в процессах необратимой деформации целесообразно, кроме экспериментального получения «холодной» диаграммы деформирования материала, по которой определяются характеристики исходной дислокационной структуры ρ_{so} и λ [7], иметь две-три экспериментальных диаграммы деформирования или две-три экспериментальные кривые ползучести материала для более точной «настройки» моделей. Настройка моделей сводится к более точному определению зависимостей $\beta(T, \varepsilon)$ для исследуемого материала.

2. МОДЕЛЬ ВЯЗКОУПРУГОСТИ (РЕЛАКСАЦИИ НАПРЯЖЕНИЙ)

Нетрудно понять, что изложенная теория вязкопластичности может быть обобщена на упруговязкопластическую среду присоединением к уравнениям (1) и (2) упругой составляющей деформации в форме закона Гука. Продемонстрируем это на примере построения модели релаксации напряжений (вязкоупругости). С целью учета истории нагружения модель будем строить в конечных приращениях.

Если материальная частица первоначально на расчетном шаге g = 1, характеризуемым малым приращением времени $dt_{(g)}$, будет нагружена напряжением интенсивностью $\sigma_{(g)} < \sigma_{02}$, то она получит упругую деформацию, равную

$$\varepsilon_{(g)}^{e} = \sigma_{(g)} / E, \qquad (22)$$

где Е – модуль Юнга, верхний индекс «*e*» здесь и далее будет означать упругую деформацию.

За время $dt_{(g)}$ часть упругой деформации перейдет в необратимую деформацию ползучести интенсивностью (9) со скоростью (7). Оставшаяся упругая деформация будет равна

$$\boldsymbol{\varepsilon}_{(g+1)}^{e} = \boldsymbol{\varepsilon}_{(g)}^{e} - d\boldsymbol{\varepsilon}_{(g)}^{c}.$$
⁽²³⁾

Этой деформации будет соответствовать напряжение

$$\sigma_{(g+1)} = \mathbf{E} \varepsilon^{e}_{(g+1)} \,. \tag{24}$$

На расчетном шаге *g* напряжение уменьшается на величину

$$d\sigma_{(g)} = \sigma_{(g)} - \sigma_{(g+1)}. \qquad (25)$$

Взаимосвязь между изменением напряжения на расчетном шаге $g \, d\sigma_{(g)}$ и изменением плотности дислокаций $d\rho_{s(g)}$ найдем дифференцированием (3) по ρ_s на малом отрезке $d\varepsilon_{(g)}$, считая на нем *T*, $\dot{\varepsilon} = \text{const}$. Она будет иметь вид

$$d\rho_{s(g)} = d\sigma_{(g)} / \left[\frac{\beta mGb}{2\sqrt{\rho_{s(g)}}} - \frac{mkT_{(g)}}{2b^2\sqrt{\rho_{s(g)}}} \times \left(1 + \ln \frac{\dot{\epsilon}_* b\sqrt{\rho_{s(g)}}}{\dot{\epsilon}_{(g)}}\right) \right].$$
(26)

Оставшаяся после завершения расчетного шага *g* плотность дислокаций рассчитывается по формуле

$$\rho_{s(g+1)} = \rho_{s(g)} - d\rho_{s(g)}, \qquad (27)$$

при этом время релаксации за *g* шагов найдется как

$$t_{(g)} = t_{(g-1)} + dt_{(g)}.$$
(28)

На этом первый расчетный цикл заканчивается и следующий начинается опять с определения $\dot{\epsilon}_{(g+1)}^c$ по (7) при плотности дислокаций $\rho_{s(g+1)}$ по (27).

Расчет заканчивается, когда в (23) станет $\varepsilon_{(g+1)}^{e} = 0$, то есть первоначальная упругая деформация полностью перейдет в необратимую деформацию ползучести.

Кривая релаксации напряжения $\sigma(t)$ получается постановкой в соответствие значениям времени (28) на каждом расчетном шаге *g* значений интенсивности напряжений по (24).

3. ЭКСПЕРИМЕНТАЛЬНАЯ ПРОВЕРКА МОДЕЛИ

Верификацию модели проводили сравнением кривых ползучести, полученных экспериментальным методом, с кривыми, полученными расчетом по уравнениям модели для различных сплавов.

В качестве примера на рис. 1–3 приведены экспериментальные (точки) и теоретические (сплошные кривые) кривые ползучести $\varepsilon^{c}(t)$, где ε^{c} – деформация ползучести, t – время малоуглеродистой стали 08, алюминиевого сплава АМг5В и нержавеющей стали X18Н9Т при разных температурах T. Экспериментальные кривые взяты из работы [9].

Расчеты проводили при следующих значениях констант модели ползучести: m = 3,1; $b = 3 \cdot 10^{-8}$ см; $v_D = \dot{\epsilon}_* = 10^{12} c^{-1}$; $k = 1,38 \times 10^{-23}$ Дж/°К. Остальные параметры модели приведены в табл. 1 и 2.

Значения *G* взяты из работы [10]. Величины ρ_{so} и λ для исследованных сплавов определяли по экспериментальным диаграммам деформирования $\sigma(\varepsilon)$, построенным по результатам одноосной осадки образцов в условиях холодной деформации по методике, описанной в [7].

Таблица 1

Значения длины свободного пробега λ и исходной в материале плотности дислокаций ρ_{so}

Материал	$\lambda \cdot 10^{-4}$, см	$ ho_{\it so}\cdot 10^9$, см ⁻²
Сталь 08	3,93	5,25
Сплав АМг5В	886,58	31,57
Сталь Х18Н9Т	31,5	7,69

Таблица 2

Значения модуля сдвига G сплавов при различных температурах

Материал	Температура,°С	<i>G</i> , МПа
08	400	60000
	425	59000
	450	58000
	460	57500
АМг5В	200	24200
	225	23800
	238	23600
	263	23100
X18H9T	725	56700
	735	56500

Рис. 1. Кривые ползучести стали 08 при напряжении 100 МПа и температурах: *1*-*T* = 400 °C, *2*-*T* = 425 °C, *3*-*T* = 450 °C, *4*-*T* = 460 °C

Из приведенных на рис. 1–3 результатов следует, что разработанная физико-феноменологическая модель дислокационной ползучести металлов весьма удовлетворительно описывает экспериментальные кривые ползучести разных сплавов. При этом установлено, что коэффициент β энергии активации самодиффузии возрастает, как и при активной деформации для исследованных сплавов, с увеличением температуры [7]. Эту зависимость можно аппроксимировать уравнением $\beta = 5 \cdot 10^{-5} T + 0.5169$, то есть при ползучести зависимость $\beta(T)$ располагается выше аналогичной при активной деформации примерно на 0,153.

Рис. 2. Кривые ползучести сплава АМг5В при напряжении 50 МПа и температурах:

I - I = 200	$^{2}C, 2 - I = 225$	$^{1}C, 3 - I = 238$	⁻ C
	4 - T = 263	°C	

Рис. 3. Кривые ползучести стали X18H9T при напряжении 150 МПа и температурах: 1–*T*=725°*C*, 2–*T*=735°*C*

ЗАКЛЮЧЕНИЕ

Изложенная физико-феноменологическая модель дислокационной ползучести металлов хорошо описывает экспериментальные кривые ползучести исследованных сплавов. В отличие от классической математической теории предложенная модель описывает неустановившуюся ползучесть, что расширяет возможности расчетов деталей машин на ползучесть.

СПИСОК ЛИТЕРАТУРЫ

1. **Работнов Ю. Н**. Ползучесть элементов конструкций. М.: Наука, 1966. 752 с.

2. Расчеты машиностроительных конструкций методом конечных элементов: справочник / В. И. Мяченков [и др.]. М.: Машиностроение, 1989. 520 с.

3. **ГОСТ 3248-81**. Металлы. Метод испытания на ползучесть. Издательство стандартов, 1988.

4. Малинин Н. Н. Ползучесть в обработке металлов. М.: Машиностроение, 1986. 220 с.

5. Чадек Й. Ползучесть металлических материалов. М.: Мир, 1987. 302 с.

6. Пуарье Ж. П. Высокотемпературная пластичность кристаллических тел. М.: Металлургия, 1982. 272 с.

7. Грешнов В. М. О физико-математической теории необратимых деформаций металлов // Механика твердого тела. 2011. № 4. С. 62–74.

8. **Малинин Н. Н.** Прикладная теория пластичности и ползучести: учеб. для машиностроит. спец. вузов. М.: Машиностроение, 1968. 400 с.

9. Дегтярев В. П. Пластичность и ползучесть машиностроительных конструкций. М.: Машиностроение, 1967. 131 с.

10. Марочник сталей и сплавов / В. Г. Сорокин [и др.]. М.: Машиностроение, 1989. 640 с.

ОБ АВТОРАХ

Грешнов Владимир Михайлович, проф., зав. каф. теор. механики. Дипл. инженер-механик (УАИ, 1974). Д-р физ.-мат. наук по физ. тверд. тела (ИПМ АН Украины, 1992). Иссл. в обл. физ. и мех. пластич. деформации.

Шайхутдинов Рафаэль Ирекович, асп. той же каф. Дип. инженер по машинам и технологиям обработки металлов давлением (УГАТУ, 2011). Готовит дис. в обл. физ.-мат. теории ползучести.