Вестник УГАМУ

МАШИНОСТРОЕНИЕ

УДК 532:622.32

Ш. Р. Галлямов, А. В. Месропян, М. О. Митягина

МЕТОДИКА ИДЕНТИФИКАЦИИ ПАРАМЕТРОВ И ХАРАКТЕРИСТИК ЭЛЕКТРОГИДРАВЛИЧЕСКИХ СВЕРЛЯЩИХ ПЕРФОРАТОРОВ

Предложена методика идентификации параметров и характеристик электрогидравлического сверлящего перфоратора для вторичного вскрытия пластов. Приведены расчетная схема и результаты расчетов статических и динамических характеристик контура фиксации сверлящего перфоратора. Электрогидравлический сверлящий перфоратор; методика идентификации; контур фиксации; математическая модель; стохастические параметры

Идентификация параметров и характеристик сверлящих перфораторов – это процесс математического моделирования, позволяющий определять и учитывать степень влияния внешних и внутренних факторов на параметры и характеристики сверлящих перфораторов [1].

Методика идентификации определяет перечень, последовательность и содержание иерархической структуры работ (ИСР), что позволяет учитывать при моделировании характеристик электрогидравлического сверлящего перфоратора случайный разброс параметров и коэффициентов, входящих в математическую модель, и оценивать степень их влияния на параметры и характеристики прибора.

На рис. 1 приведена ИСР идентификации параметров и характеристик сверлящего перфоратора.

Рис. 1. ИСР идентификации параметров и характеристик сверлящего перфоратора

Контактная информация: mesropyan@ugatu.ac.ru

При работе на скважинах разных диаметров могут быть востребованы сверлящие перфораторы различных типоразмеров, поскольку величина выдвижения штоков гидроцилиндров фиксации напрямую зависит от диаметра обсадной колонны [2] (табл. 1). В связи с этим большую значимость представляет разработка методики иден-тификации параметров и характеристик контура фиксации сверлящего перфоратора, что позволит идентифицировать характеристики возможных типоразмеров сверлящего перфоратора при работе на скважинах разных диаметров.

Таблица 1

Параметры перфоратора

		Величина	
Условный диаметр обсадной трубы, мм	Диаметр	выдвижения	
	корпуса	штока	
	сверлящего	поршня	
	перфоратора,	гидро-	
	MM	цилиндра	
		фиксации,	
		ММ	
140		20	
146		26	
168	120	48	
178	120	58	
194		74	
219		99	
245		45	
273	200	73	
299	200	99	
324		124	
340		60	
351	280	71	
377		97	
406		126	
426		146	
	Условный диаметр обсадной трубы, мм 140 146 168 178 194 219 245 273 299 324 340 351 377 406 426	Условный диаметр обсадной трубы, MM Диаметр корпуса сверлящего перфоратора, MM 140 146 168 178 194 219 245 273 299 324 340 351 377 280	

Структура математической модели сверлящего перфоратора определяется принципиальной [3] и расчетной (рис. 2) схемами идентифицируемого объекта, на основании которых уточняется перечень исходных данных и расчетных параметров сверлящего перфоратора.

Перечень параметров, задаваемых при идентификации контура фиксации (КФ) сверлящего перфоратора:

- входное напряжение $U_{\text{уПР}_{\Phi}}$;
- ток электрической цепи в КФ I_{ϕ} ;

• индуктивность обмотки управления электромагнита в КФ L_{ϕ} ;

• коэффициент противо-ЭДС в электрической

цепи *К*_{ПЭф}; • давление питания и слива гидросистемы $(\Gamma C) p_{\Pi UT}, p_{CT};$

• коэффициент, учитывающий трение в паре трения «плунжер – гильза» в КФ $b_{3_{\Phi}}$;

- коэффициент расхода жидкости µ;
- плотность рабочей жидкости р;

• приведенный модуль упругости рабочей жидкости Е;

• коэффициент вязкого демпфирования ГЦ фиксации $b_{\Gamma \amalg_{\Phi}}$;

• диаметр золотника $d_{3_{\Phi}}$;

• расход РЖ через золотник $Q_{_{3_{\Phi}}}$;

• плотность материала золотника гидрораспределителя (ГР) $\rho_{3_{\Phi}}$; • диаметр поршня ГЦ фиксации $D_{\Pi_{\Phi}}$;

- диаметр штока ГЦ фиксации $d_{\text{III}_{\Phi}}$;
- ход поршня ГЦ фиксации $L_{\Pi_{\Phi}}$;
- масса ГЦ фиксации *m*_{ГПФ};

• гидростатическое давление, которое действует на шток поршня ГЦ фиксации $p_{\Gamma C}$;

• максимальная подача насоса Q_{\max} ;

• общий коэффициент полезного действия насоса η.

Рис. 2. Расчетная схема контура фиксации сверлящего перфоратора:

1, *3* – распределители; *2* – гидроцилиндр фиксации

Перечень параметров, определяемых при идентификации КФ сверлящего перфоратора:

• коэффициент силы тока в электрической цепи K_{Fip} ;

• жесткость пружины ГР $c_{\Pi P_{\pi}}$.

Перечень расчетных параметров, определяемых при идентификации КФ сверлящего перфоратора:

• активное сопротивление обмотки управления электромагнита в КФ R_{ϕ} ;

- масса золотника ГР $m_{3^{\circ}}$;
- объем золотника ГР $V_{3\phi}^{\Psi}$

• площадь золотника в ГР f_{Φ} ;

• эффективная площадь поршня ГЦ фиксации со стороны поршня $A_{\Pi_{\Phi}}$; • эффективная площадь поршня ГЦ фикса-

ции со стороны штока $A_{\Im \Phi_\Phi}$;

• объём рабочей жидкости в камере ГЦ фиксации $W_{\Gamma \amalg_{\Phi}}$; • статическая нагрузка на ГЦ фиксации $R_{\text{стат}_{\Phi}}$.

Пример задания исходных данных в специализированном пакете Maple приведен на рис. 3.

Основные зависимости для определения расчетных параметров, определяемых при идентификации сверлящего перфоратора, приведены далее. **T** 7

$$R_{\Phi} = \frac{U_{\text{yIIP}_{\Phi}}}{I_{\Phi}}.$$
 (1)

🖫 *Маріе 12 - D:\\\ашa\\yue ба\Диссер\\\атематические модели\Динамика размерные последний вари 💶 🗖 🗙							
File Edit View Insert Fo	ormac Ben f	iac Ba	se Drawing Piot	> preadsneet loois window Help	ው ଫ 🔍	©∉9∉ ≓ 0	3
Favorites			ext Math	Drawing Plot Animation			tide
► Handwriting	í	\subset	C Text	▼ Times New Roman ▼ 11 ▼	B I ∐ ≡[≣≡₽₽	•
Expression		Y	Математи	ческая модель контур:	а фиксаци	И	^
$\int f dx \int f dx$			Перечень пара	аметров, задаваемых при моделиро I	вании КФ СП Г	1	,
n n			Обозначение	Определение величины	Значение параметра	Единица измерения	
$\sum_{i=k} f \prod_{i=k} f$			Uyrp	паспортные данные ЭД	24	В	
$\frac{\mathrm{d}}{\mathrm{d}x}f \frac{\mathrm{d}}{\mathrm{d}x}f$	Ш		IΦ	паспортные данные ЭД	0,8	А	
$\lim_{x \to a} f a + b$			L_{Φ}	паспортные данные ЭД	1	Гн	
$a-b$ $a \cdot b$			К _{ПЭф}	паспортные данные ГР управления ГЦ фиксации	0,2	В∙с/м	
$\frac{a}{b}$ a^{b}			рпит	выбирается по номинальному давлению насоса в ГС	20,5 ·10 ⁶	Па	
$a_n a_{\ddagger}$			Рсл	выбирается по давлению в сливных трубопроводах (ТП)	~0	Па	
a! a			_{bзф}	коэффициент выбирается в диапазоне 0,010,1	0,1	-	
e^{a} $\ln(a)$			μ	коэффициент выбирается в диапазоне 0,640,72	0,72	-	
$\sin(a) \cos(a)$ $\sin(a) \cos(a)$			р	величина берется из характеристик рабочей жидкости, выбранной для ГС	834	kt/m ³	
f(a) = f(a, b)			E	выбирается в диапазоне 12•10818•108	15•10 ⁸	Па	
$f := a \rightarrow y$			^b гц _Ф	коэффициент выбирается в диапазоне 0,11	0,1	-	
$\begin{array}{c} f \coloneqq (a, b) \to z \\ f(x) \end{array}$			$d_{3\Phi}$	паспортные данные ГР управлением ГЦ фиксации	0,004	м	
x = a $\left[-x \ x \le a \right]$			<i>Q</i> _{3ф}	паспортные данные ГР управлением ГЦ фиксации	1,8·10 ⁻⁶	м ³ /с	
$\begin{array}{ c c c c } \hline x & x \ge \alpha \\ \hline & & \\ \hline \\ \hline$			۶ _{3Ф}	величина берется из характеристик материала, из которого изготовлен золотник	7800	kt/M ³	
Units (FPS)			$D_{\Pi \Phi}$	принимаем, исходя из условий требований усилий	0,03	м	
▼Common Symbols π e i j I			$d_{\amalg \Phi}$	принимаем, исходя из условий требований усилий	0,012	м	
∞ΣΠ∫d			L _{ΠΦ}	принимаем исходя из условий технических требований	0,066	м	
110≥>≯ ≱≤<≮≰			тцф	паспортные данные ГЦ фиксации	0,4318	кт	
$\alpha \approx \sim = \neq$			P _{TC}	берется значение давления для максимальной глубины работы СП	80•10 ⁶	МПа	
≡≢∈∉⊆ ∖ø∃∀¬			Q _{max}	паспортные данные насоса	9·10 ⁻⁶	м ³ /с	
$\wedge \vee \checkmark \Rightarrow \mathbb{C}$			η	паспортные данные насоса	0,8	-	

Рис. 3. Перечень параметров, задаваемых при идентификации КФ сверлящего перфоратора

$$m_{3_{\Phi}} = \rho_{3_{\Phi}} \cdot V_{3_{\Phi}}.$$
 (2)

$$V_{3_{\Phi}} = f_{\Phi} \cdot h_{3_{\Phi}}. \tag{3}$$

$$f_{\Phi} = \frac{Q_{3}}{\mu \cdot \sqrt{\frac{2 \cdot p_{\Pi H T}}{\rho}}}$$
 (4)

$$A_{\Pi_{\Phi}} = \frac{\pi \cdot D_{\Pi_{\Phi}}^2}{4} . \tag{5}$$

$$A_{\ni\Phi_{\Phi}} = \frac{\pi \cdot \left(D_{\Pi_{\Phi}}^2 - d_{\Pi_{\Phi}}^2\right)}{4}.$$
 (6)

$$W_{\Gamma \amalg_{\Phi}} = A_{\Im \Phi_{\Phi}} \cdot L_{\Pi_{\Phi}} . \tag{7}$$

$$R_{\text{CTAT}_{\Phi}} = p_{\Gamma C} \cdot A_{\Im \Phi_{\Phi}} \,. \tag{8}$$

Пример задания расчетных параметров в специализированном пакете *Maple* приведен на рис. 4.

Процессу разработки математической модели сверлящего перфоратора предшествует принятие допущений и ограничений:

 математические модели течения рабочей жидкости представлены системой одномерных дифференциально-алгебраических уравнений;

• используются ГР с одинаковыми гидравлическими параметрами и микрогеометрией; • в качестве нагрузки ГЦ фиксации используется гидростатическое давление в скважине;

 коэффициент расхода жидкости через распределители принимаем постоянным μ = 0,72;

 процессы течения однофазной несжимаемой рабочей жидкости по трактам гидравлической схемы приняты изотермическими.

Разработка математической модели электрогидравлического сверлящего перфоратора осуществляется в соответствии со схемой, приведенной на рис. 5.

Контур фиксации обеспечивает фиксацию корпуса сверлящего перфоратора в обсадной колонне при помощи штоков двух ГЦ фиксации, которые равномерно выдвигаются, выбирая зазор между корпусом перфоратора и обсадной колонной (обычно не более, чем на 0,2–1 м в течение 2–10 с). Выдвижением штоков ГЦ управляет золотниковый гидрораспределитель с электромагнитным управлением.

Для описания функционирования ГС КФ сверлящего перфоратора в стационарных условиях математическую модель удобно представить в виде располагаемой энергии ГС – основной внутренней характеристики системы:

$$p = p_{\Pi \mu T} \cdot \frac{Q_{\Pi \mu T} - Q}{Q_{\Pi \mu T} - Q_{\Pi \mu T} \cdot \eta}, \qquad (9)$$

► Units (SI)	Значения расч	Значения расчетных параметров, определяемых при моделировании КФ СП			
► Units (FPS)	Обозначение	Определение величины	Значение параметра	Единица измерения	
<mark> </mark>	R _Φ	$R_{\Phi} = \frac{24}{0.8} = 30 \text{ Om}$	30	Ом	
$\cap \cup \ge > \neq$	m _{3p}	$m_{3_{\bullet}} = 7800 \cdot 0,5 \cdot 10^{-6} = 0,004 \text{ km}$	0,004	кŢ	
$2 \leq < \leq \leq < \alpha \approx \sim = \neq $	V ₃ _Φ	$V_{3_{\bullet}} = 12,6 \cdot 10^{-6} \cdot 0,041 = 0,5 \cdot 10^{-6} \text{ m}^3$	0,5•10 ⁻⁶	м ³	Ш
$ = \neq \in \notin \subseteq \land \emptyset \exists \forall \neg \land \lor x \Rightarrow \mathbb{C} $	fφ	$f_{\Phi} = \frac{1.8 \cdot 10^{-6}}{0.72 \cdot \sqrt{\frac{2 \cdot 20 \cdot 10^{6}}{834}}} = 0.12 \cdot 10^{-6} \text{ m}^{2}$	0,12·10 ⁻⁶	м ²	
R N Q Z ℜ ℑ ≔ ∥ ′ +	$A_{\Pi_{\Phi}}$	$A_{\Pi_{\Phi}} = \frac{\pi \cdot 0.03^2}{4} = 707 \cdot 10^{-6} \text{ m}^2$	707·10 ⁻⁶	M2	
	$A_{\ni \Phi_{\Phi}}$	$A_{\Im\Phi_{*}} = \frac{\pi \cdot (0.03^{2} - 0.012^{2})}{4} = 594 \cdot 10^{-6} \text{ m}^{2}$	594•10 ⁻⁶	M ²	
· · · · · · · · · · · · · · · · · · ·	W _{TU} _Φ	$W_{\Pi I_{\bullet}} = 594 \cdot 10^{-6} \cdot 0,02 = 11,9 \cdot 10^{-6} \text{ m}^3$	11,9•10 ⁻⁶	м ³	
Components	R _{CTAT}	$R_{\text{CTAT}_{\bullet}} = 80 \cdot 10^6 \cdot 594 \cdot 10^{-6} = 9048 \text{ H}$	9048	н	

Рис. 4. Перечень расчетных параметров, определяемых при идентификации КФ сверлящего перфоратора

$$p = p_{\rm KO} + \frac{p_{\rm \Pi MT} - p_{\rm KO}}{Q_{\rm \Pi MT}} \cdot Q \quad (10)$$

Внешние статические характеристики могут быть получены из внутренних путем пересчета по соотношениям:

$$R_{\mathrm{H}_{\Phi}} = p \cdot A_{\Im \Phi_{\Phi}}, \qquad (11)$$

$$V_{\Phi} = \frac{Q}{A_{\Im \Phi_{\Phi}}} \,. \tag{12}$$

На рис. 6–7 представлены результаты расчета типовых статических характеристик контура фиксации сверлящего перфоратора.

Точка пересечения двух прямых на рис. 6 является оптимумом совместной работы переливного клапана и насоса гидросистемы сверлящего перфоратора.

Характерной особенностью внешней характеристики (рис. 7) является ее нежесткость: с ростом нагрузки, приложенной к гидроцилиндру

Рис. 5. Структура математической модели сверлящего перфоратора

Располагаемая характеристика насосной станции Variables Handwriting $R := plot(\{P, P_k\}, Q = 0 ... 0.0000095, color = black, thickness = 2,$ Expression $view = [0..0.0000095, 0..23 \cdot 10^6],$ Units (SI) title = "Располагаемая характеристика насосной станции", labels = [Pacxog ГС, Давление питания]) : Units (FPS) display(M, R) Common Symbo Располагаемая характеристика насоса Matrix Components $2. \times 10^{7}$ ▶ Greek Arrows 1.5×10^{7} Relational Relational Round Давление н coca Negated 1.×107 Large Operators Operators Open Face 5.×10⁶ ▶ Fraktur Script Ω 0 1.×10⁻⁶ 3.×10⁻⁶ 5.×10-6 7.×10⁻⁶ 9.×10-6

Рис. 6. Располагаемая характеристика насосной станции

Рис. 7. Нагрузочная характеристика гидроцилиндра фиксации

фиксации, скорость движения штока гидроцилиндра уменьшается.

Математическая модель КФ включает в себя: уравнение электрической цепи, уравнение движения золотникового ГР, уравнения баланса расходов и уравнение движения ГЦ фиксации (13).

$$\begin{cases} K_{\Pi \Im_{\Phi}} \frac{dx_{\Phi}(t)}{dt} = U_{Y\Pi P_{\Phi}} - R_{\Phi} i_{\Phi}(t) - L_{\Phi} \frac{di_{\Phi}(t)}{dt}, \\ m_{\Im_{\Phi}} \frac{d^{2} x_{\Phi}(t)}{dt^{2}} + b_{\Im_{\Phi}} \frac{dx_{\Phi}(t)}{dt} + \\ + c_{\Pi P_{\Phi}} x_{\Phi}(t) = K_{Fi_{\Phi}} i_{\Phi}(t), \\ \mu B_{\Phi} x_{\Phi}(t) \sqrt{\frac{2|p_{\Pi H T} - p_{I_{\Phi}}(t)|}{\rho}} \times \\ \times \text{sign}(p_{\Pi H T} - p_{I_{\Phi}}(t)) = \\ = A_{\Pi_{\Phi}} \frac{dy_{\Phi}(t)}{dt} + \frac{W_{\Pi I_{\Phi}}}{2 \cdot E} \frac{dp_{I_{\Phi}}(t)}{dt}, \\ \mu Bx_{\Phi}(t) \sqrt{\frac{2|p_{2_{\Phi}}(t) - p_{C\Pi}|}{\rho}} \times \\ \times \text{sign}(p_{2_{\Phi}}(t) - p_{C\Pi}) = \\ = A_{\Im \Phi_{\Phi}} \frac{dy_{\Phi}(t)}{dt} - \frac{W_{\Pi I_{\Phi}}}{2 \cdot E} \frac{dp_{2_{\Phi}}(t)}{dt}, \\ m_{\Pi I_{\Phi}} \frac{d^{2} y_{\Phi}(t)}{dt^{2}} = A_{\Im \Phi_{\Phi}}(p_{I_{\Phi}}(t) - p_{2_{\Phi}}(t)) - \\ -R_{CTAT_{\Phi}} \cdot \text{sign}\left(\frac{dy_{\Phi}(t)}{dt}\right) - b_{\Pi I_{\Phi}} \frac{dy_{\Phi}(t)}{dt}, \end{cases}$$

Введем граничные условия для математической модели КФ сверлящего перфоратора:

$$\begin{split} & 0 \leq i_{\Phi}(t) \leq 1 \text{A}; \\ & 0 \leq x_{\Phi}(t) \leq 0,001 \text{M}; \\ & 0 \leq p_{1_{\Phi}}(t) \leq 20 \text{ MIIa}; \\ & 0 \leq p_{2_{\Phi}}(t) \leq 20 \text{ MIIa}; \\ & 0 \leq y_{\Phi}(t) \leq 0,066 \text{ M}. \end{split}$$

Численное решение системы дифференциальных уравнений (13) проводилось на ЭВМ методом Рунге-Кутта 4–5-го порядка.

На рис. 8–9 представлены результаты расчета типовых динамических характеристик контура фиксации сверлящего перфоратора.

По результатам анализа переходного процесса перемещения золотника ГР (рис. 8) устанавливают быстродействие электрогидравлической системы сверлящего перфоратора: в данном случае выход на режим составляет 0,2 с.

Время фиксации сверлящего перфоратора в обсадной колоне составляет 4,6 с, что соответствует техническим характеристикам приборов для вторичного вскрытия продуктивных пластов.

При определении стохастических коэффициентов в первую очередь уточняется перечень стохастических параметров и коэффициентов, подлежащих идентификации.

Скорость выдвижения штока ГЦ фиксации определяется величиной расхода рабочей жидкости, поступающей в гидроцилиндр:

Рис. 8. Переходный процесс перемещения золотника ГР

Рис. 9. Переходный процесс перемещения поршня ГЦ фиксации

$$Q_{\Gamma \amalg} = V_{\Phi} \cdot A_{\Im \Phi_{\Phi}}, \qquad (14)$$

где V_{Φ} – скорость выдвижения штока ГЦ, м/с.

Расход рабочей жидкости, поступающей в гидроцилиндр, описывается выражением (15):

$$Q_{\Gamma II} = \gamma_O \cdot Q_{\rm H}, \qquad (15)$$

где γ_Q – стохастический коэффициент неравномерности подачи насоса, определяемый неравномерностью подачи насоса (разброс γ_Q определен в ходе экспериментальных исследований гидравлической системы контура фиксации сверлящего перфоратора, 0,95 < γ_Q < 1,05); $Q_{\rm H} = Q_{\rm ПИТ}$ – подача насоса, м³/с. Стохастический характер величины давления питания определяется разбросом значений времени выдвижения штока ГЦ фиксации. Случайный разброс давления питания ГС описывается выражением (16):

$$p_{\rm d} = \gamma_p \cdot p_{\rm CP}, \qquad (16)$$

где $p_{\rm A}$ – действительное значение давления питания ГС, Па; γ_p – стохастический коэффициент давления питания, определяемый величиной разброса значений давления питания ГС (разброс γ_p определен в ходе экспериментальных исследований гидравлической системы контура фиксации сверлящего перфоратора, 0,95 < γ_p < 1,05); $p_{\rm CP}$ – среднее значение давления питания ГС, Па.

Таким образом, для построения стохастической математической модели контура фиксации сверлящего перфоратора целесообразно учитывать случайный разброс коэффициентов γ_0 и γ_n .

Учет коэффициента неравномерности подачи насоса γ_{Q} и стохастического коэффициента давления питания γ_{p} позволяет рассчитывать статические и динамические характеристики контура фиксации сверлящего перфоратора по выражениям уже не в виде кривых (рис. 6–9), а в виде области значений характеристик, где центральная кривая соответствует среднему значению характеристики, а крайние кривые отражают влияние на характеристики случайного разброса учтенных в модели стохастических коэффициентов γ_{Q} и γ_{p} .

Для определения точных значений идентифицируемых коэффициентов и параметров необходимо проведение экспериментальных исследований, программа и объем которых позволят принять и проверить гипотезу о соответствии распределения экспериментальных данных какому-либо типу распределения, например – нормальному закону распределения (табл. 2), определить статистические значения стохастических параметров и коэффициентов:

• математическое ожидание

$$m_t = \sum_{n=1}^k t_n \cdot P_n \,, \tag{17}$$

где t_n – случайное значение исследуемого параметра, P_n – вероятность случайного события;

• дисперсия

$$D_{t} = \sum_{n=1}^{k} (t_{n} - m_{t})^{2} \cdot P_{n} ; \qquad (18)$$

• среднеквадратичное отклонение

$$\sigma_t = \sqrt{D_t} \,. \tag{19}$$

Диапазон изменения исследуемого параметра определяется на основании следующего выражения:

$$P_n(|t_n| < \delta) = 2 \cdot \Phi \cdot \left(\frac{\delta}{\sigma_t}\right), \qquad (20)$$

где δ – абсолютная величина отклонения случайной величины от ее математического ожидания; Ф – интегральная функция Лапласа.

Задаваясь требуемой вероятностью события, например P = 0,95, по табличным данным [4] определяется значение интегральной функции Лапласа. Подстановка известных параметров в выражение (20) позволяет определить абсолютную величину отклонения случайной величины от ее математического ожидания.

Диапазон изменения исследуемой величины определяется по зависимостям:

$$t_n$$
 (min) = $m_t - \delta$ и t_n (max) = $m_t + \delta$

Плотность распределения вероятности события для рассчитывается по выражению вида:

$$f(t_n) = \frac{1}{\sigma_t \cdot \sqrt{2 \cdot \pi}} \cdot e^{\frac{-(t_n - m_t)^2}{2 \cdot \sigma_t^2}}.$$

Таблица 2

Типы распределений и их функции плотности распределения

Тип распреде- ления	Функция плотности распределения	
нормальное	$f(x) = \frac{1}{\sigma \cdot \sqrt{2 \cdot \pi}} \cdot e^{\frac{-(x-a)^2}{2 \cdot \sigma^2}},$ где <i>a</i> – математическое ожидание, σ – среднее квадратическое отклонение.	
Экспонен- циальное (показа- тельное)	$f(x) = \begin{cases} 0 \text{ при } x < 0, \\ \lambda \cdot e^{-\lambda \cdot x} \text{ при } x \ge 0, \end{cases}$ где λ – постоянная положительная величина	
хи квадрат	$f(x) = \begin{cases} 0 \text{ при } x \le 0, \\ \frac{1}{2^{\frac{k}{2}}\Gamma \cdot \frac{k}{2}} e^{-\frac{x}{2}x^{\frac{k}{2}-1}} \text{ при } x > 0, \\ \frac{1}{2^{\frac{k}{2}}\Gamma \cdot \frac{k}{2}} e^{-\frac{x}{2}x^{\frac{k}{2}-1}} \text{ при } x > 0, \\ \Gamma(x) = \int_{0}^{\infty} t^{x-1}e^{-t}dt - \text{гамма-функция;} \\ \text{в частности } \Gamma(n+1) = n!. \end{cases}$	
Стьюдента	$f(x) = \frac{1}{\sqrt{k}} \frac{\Gamma\left(\frac{k+1}{2}\right)}{\Gamma\left(\frac{k}{2}\right)} \left(1 + \frac{x^2}{k}\right)^{\frac{k+1}{2}} .$	
F Фишера – Снедекора	$f(x) = \begin{cases} 0 & \text{при } x \le 0, \\ C_0 \frac{x^{\frac{k_1 - 2}{2}}}{\left(k_2 + k_1 \cdot x\right)^{\frac{k_1 + k_2}{2}}} & \text{при } x > 0, \end{cases}$ где $C_0 = \frac{\Gamma \cdot \left(\frac{k_1 + k_2}{2}\right) \cdot k_1^{\frac{k_1}{2}} \cdot k_2^{\frac{k_2}{2}}}{\Gamma \cdot \frac{k_1}{2} \cdot \Gamma \cdot \frac{k_2}{2}} ,$ $k_1, k_2 - \text{степени свободы.}$	

Анализ полученных результатов начинается с обработки и обобщения результатов численных и экспериментальных исследований и их сравнения с целью верификации разработанной математической модели сверлящего перфоратора. Выбор метода статистической обработки экспериментальных данных должен обосновываться соответствующими объемами выборок, а также сравнением результатов статистической обработки с экспериментальными данными.

При верификации математической модели сверлящего перфоратора результаты численных расчетов сопоставляются с результатами экспериментальных исследований, таким образом, проверяется адекватность математической модели сверлящего перфоратора реальному объекту.

Если по результатам верификации математической модели сверлящего перфоратора расхождение теоретических и экспериментальных данных составляет более 10 %, то принимается решение о доработке математической модели: уточнения перечня стохастических коэффициентов, определения их статистических параметров, выработке рекомендаций по использованию разработанных математических моделей сверлящего перфоратора с указанием необходимых ограничений по моделированию и использованию результатов.

ЗАКЛЮЧЕНИЕ

Разработана и реализована на ЭВМ методика идентификации параметров и характеристик электрогидравлического сверлящего перфоратора, позволяющая поэтапно проводить идентификацию характеристик аппаратуры для вторичного вскрытия продуктивных пластов.

Разработана математическая модель контура фиксации сверлящего перфоратора, учитывающая случайный разброс входящих в нее параметров, и позволяющая оценивать степень влияния стохастических коэффициентов на характеристики прибора. Реализованные на ЭВМ математические модели позволяют в случае необходимости дополнять и изменять перечень стохастических параметров и коэффициентов, влияющих на разброс статических и динамических характеристик сверлящих перфораторов, учет которых повысит адекватность математических моделей реальным объектам.

СПИСОК ЛИТЕРАТУРЫ

1. Арефьев К. В., Месропян А. В., Телицын Ю. С. и др. Идентификация и адаптивное управление струйными гидравлическими рулевыми машинами / под ред. Месропяна А. В. М.: МАИ, 2007. 282 с.

2. Галлямов, Ш. Р., Месропян, А. В., Митягина, М. О. Введение безразмерных переменных при моделировании гидросистемы сверлящего перфоратора // Вестник УГАТУ. Уфа, 2012. Т. 16, № 2 (47). С. 169–173.

3. Казакова Т. Г., Месропян А.В., Митягина М.О. Разработка сверлящего перфоратора с электрогидравлической системой // Автоматизация, телемеханизация и связь в нефтяной промышти. М.: ОАО «ВНИИОЭНГ», 2012. №1. С. 25–31.

4. Гмурман В. Е. Теория вероятностей и математическая статистика: учеб. пособие для вузов. М.: Высш. шк., 2003. 479 с.

ОБ АВТОРАХ

Галлямов Шамиль Рашитович, доц. каф. ПГМ. Дипл. магистра (УГАТУ, 2006). Канд. техн. наук (УГАТУ, 2009). Иссл. в обл. пневмо-гидросистем, разработка перспективной малогабаритной техники.

Месропян Арсен Владимирович, проф. той же каф. Дипл. инж.-мех. (УГАТУ, 1996). Д-р техн. наук по гидромашинам и гидропневмоагрегатам (УГАТУ, 2010). Иссл. в обл. гидроприводов систем управления ЛА и гидрофицированных систем испытаний и вскрытия нефтеносных пластов.

Митягина Мария Олеговна, аспирант той же каф. Диплом магистра (УГАТУ, 2012). Готовит дис. в обл. проектирования электрогидравлических сверлящих перфораторов для вторичного вскрытия продуктивных пластов.