

МАШИНОСТРОЕНИЕ

УДК 629.73.018

А. А. Гарипов, С. Ю. Константинов, Д. Е. Тук, Д. В. Целищев

ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ТЕЧЕНИЯ В ФИЛЬТРЕ

Представлена методика численного моделирования течения в фильтре поверхностной очистки, состоящая из двух этапов: 1) численное моделирование течения жидкости в элементарном объёме фильтровальной сетки; 2) численное моделирование течения жидкости в фильтре. Приведены результаты численного моделирования течения жидкости в фильтре. Приведены результаты численного моделирования течения жидкости в фильтре поверхностной очистки, полученные с использованием предлагаемой методики. Фильтры, фильтры поверхностной очистки, численное моделирование, пористые среды, методика

введение

Растущие требования к техническому совершенству и надежности сложных гидравлических систем предъявляют все большие требования к чистоте рабочих жидкостей этих систем. Наиболее сложным этапом в процессе проектирования фильтра является использование нового фильтровального материала и его правильное размещение в фильтровальном пакете, поскольку именно так он обеспечивает требуемую номинальную тонкость фильтрации, создавая минимальные препятствия потоку жидкости. Разработка фильтровальных элементов, удовлетворяющих современным тенденциям развития техники и обеспечивающих использование новых фильтровальных материалов, требует создания новых методов проектирования, основанных на применении численного моделирования течения жидкости в каналах фильтроэлемента. Разработанная методика численного моделирования течения в фильтре позволяет получить предварительные гидравлические характеристики фильтров как с поверхностным так и с объемным принципом фильтрации на стадии проектирования, что в свою очередь позволяет снизить долю затрат на отработку конструкции фильтра в общей его стоимости для потребителя.

МЕТОДИКА ЧИСЛЕННОГО МОДЕЛИРОВАНИЯ ФИЛЬТРА

Цель методики: произвести анализ конструкции фильтра и его характеристик посредством численного моделирования. Для достижения цели выполняются следующие этапы:

1) моделирование течения жидкости на микроуровне через фильтрующие и каркасные сетки элементарного объема.

2) моделирование течения жидкости во всем фильтре на макроуровне.

Допущения: 1) жидкость чистая; 2) плетение сетки идеальное; 3) число гофр фильтроэлемента бесконечно; 4) гидравлические потери в пористом теле отсутствуют.

Методика численного моделирования течения в фильтре состоит из двух этапов.

На первом этапе выполняется численное моделирование течения жидкости в элементарном объеме фильтровального элемента. Моделирование выполняется по уравнениям неразрывности [1, 2]:

$$\frac{1}{\rho}\frac{\partial\rho}{\partial t} + \operatorname{div}(\vec{u}) = 0, \qquad (1)$$

где ρ – плотность жидкости; \vec{u} – вектор скорости потока, и по уравнению импульса [1, 2]:

$$\frac{\partial(\rho\vec{u})}{\partial t} + div(\rho\vec{u}\otimes\vec{u}) = -\nabla p + \nabla\tau + S_M, \quad (2)$$

где ∇p , $\nabla \tau$ – тензор нормальных и касательных напряжений, S_M – источники сторонних напряжений в потоке. Поскольку скорости течения жидкости низкие (не более 0,1–0,3 м/с) поток считается ламинарным. В качестве условий на границах расчетной области используются давление на входе и выходе. Расходно-перепадная характеристика, полученная в результате расчета в ANSYS CFX, используется для вычисления коэффициента объемной пористости расчетного элементарного объема фильтроэлемента по закону Дарси:

$$K_{\rm np} = \frac{\mu L \cdot a}{F} , \qquad (3)$$

где $K_{\rm np}$ – коэффициент объемной пористости, μ – вязкость жидкости, L – толщина фильтро-

Контактная информация: 8 (347) 273-09-44

Исследование выполнено при поддержке Министерства образования и науки Российской Федерации, соглаше-ние 14.В37.21.0337 «Научное обоснование, создание и исследование энергосберегающих вихревых технологий фазоразделения, подогрева и редуцирования при транспортировке попутного и природного газа».

вальной сетки (сеток), *а* – тангенс угла наклона расходно-перепадной характеристики элементарного объема фильтровального элемента; *F* – площадь элементарного объема фильтроэлемента.

На втором этапе выполняется полное моделирование течения жидкости в фильтре от входа до выхода. Для этого вся проточная часть делится на три домена: домен входа, домен пористого тела, домен выхода. Течение жидкости в домене входа и домене выхода выполняется по уравнениям неразрывности (1) и импульса (2). Для замыкания системы уравнений движения жидкости (уравнения баланса масс и уравнения импульса) используется модель турбулентности k- ϵ :

$$\mu_{\rm T} = \frac{C_{\mu} \rho k^2}{\epsilon} \,, \tag{4}$$

где C_{μ} – эмпирический коэффициент, равный 0,09. Значения *k* и є считаются из системы уравнений:

$$\frac{\partial}{\partial t}(\rho k) + \nabla \cdot (\rho \vec{u} k - (\mu + \frac{\mu_{T}}{\sigma_{k}})\nabla k) =
= (P - \rho \varepsilon),
\frac{\partial}{\partial t}(\rho \varepsilon) + \nabla \cdot (\rho \vec{u} \varepsilon - (\mu + \frac{\mu_{T}}{\sigma_{k}})\nabla \varepsilon) =$$

$$= \frac{\varepsilon}{L} (C_{\varepsilon 1} P - C_{\varepsilon 2} \rho \varepsilon),$$
(5)

где $C_{\epsilon 1} = 1,44, C_{\epsilon 1} = 1,92, \sigma_k = 1, \sigma_{\epsilon} = 1,22.$

Течение жидкости через пористый домен считается по закону Дарси [1]:

$$-\frac{\partial p}{\partial x} + \frac{\mu}{K_{np}} u_x + K_{nor} \frac{\rho}{2} |\vec{u}| \cdot u_x = 0,$$

$$-\frac{\partial p}{\partial y} + \frac{\mu}{K_{np}} u_y + K_{nor} \frac{\rho}{2} |\vec{u}| \cdot u_y = 0, \qquad (6)$$

$$-\frac{\partial p}{\partial y} + \frac{\mu}{K_{np}} u_y + K_{nor} \frac{\rho}{2} |\vec{u}| \cdot u_y = 0,$$

где K_{nor} – коэффициент гидравлический потерь; u_x , u_y , u_z – компоненты вектора скорости \vec{u} . Результатом выполнения второго этапа служит расходно-перепадная характеристика исследуемого фильтра, а также картины полей скорости и давлений внутри фильтра.

На каждом из этапов методики численного моделирования в ANSYS CFX 12.1 выполняются следующие шаги: 1) подготовка геометрии; 2) построение сетки; 3) постановка задачи; 4) расчет; 5) обработка результатов моделирования. Для выполнения каждого шага используется соответствующий модуль встроенный в ANSYS 12.1. В том случае, если в процессе моделирования или анализа результатов отсутствует сходимость решения или обнаруживается нефизичность полученных данных, то необходимо вернуться ко второму или третьему шагу моделирования и учесть выявленные недостатки. Полученные результаты расчетов записываются в протокол, который ведется в виде электронной таблицы в MS Excel. По результатам расчета строятся расходно-перепадные характеристики на каждом из этапов.

ОБЪЕКТ ЧИСЛЕННОГО МОДЕЛИРОВАНИЯ

Объектом моделирования является фильтр с поверхностным принципом фильтрации ЖКДЕ.061146.011, выпускаемый ОАО УАП «Гидравлика». Конструкция фильтра представлена на рис. 1.

Рис. 1. Конструкция фильтра ЖКДЕ.061146.011: *1* – стакан; *2* – крышка; *3* – перепускной клапан; *4* – отсечной клапан; *5* – входной канал;

6 – распределительная втулка; 7 – выходной канал; 8 – седло; 9 – крышки;

10 – фильтровальная штора; 11 – основание

Фильтровальная штора 10 состоит из двух сеток: фильтрующей № 160/1100 по ТУ 16.Л71 – 144 – 91 и каркасной № 014×0,09 Таблица 1

из материала 03Х18Н9Т-ВИ по ТУ 14-4-507-99. Параметры фильтрующей и каркасной сетки приведены в табл. 1.

		Габлица Г		
Параметры фильтровальных сеток				
N⁰	Параметр	Значение		
Сетка № 160/1100 ТУ 16.Л71 – 144 – 91				
1	Номинальный диаметр основы	0,028 мм		
2	Номинальный диаметр утка	0,020 мм		
3	Число проволок основы на 1см длины	160		
4	Число проволок утки на 1 см длины	1100		
5	Ячейка в свету	отсутствует		
6	Тип плетения	Саржевое		
Сетка № 014×0,09 ТУ 14-4-507-99				
1	Номинальный диаметр основы и утка	0,09 мм		
2	Размер ячейки в свету	0,14 мм		
3	Форма ячейки в свету	Квадрат		
4	Тип плетения	Полотняное		

Фильтрующая сетка не имеет ячеек в свету. При этом жидкость проходит через загибы утка между основой за счет специфической формы саржевого плетения. Каркасная сетка имеет полотняное плетение с ячейками в свету, через которые проходит жидкость. Сетки собраны в фильтропакет, который скроен в гофрированную штору 10.

Гидравлические параметры фильтра приведены в табл. 2.

	Таблица 2
Гилравлические	параметры фильтра

№	Параметр	Значение
1	Номинальная тонкость фильтрации	5 мкм
2	Рабочая среда	масло
3	Давление рабочей среды номиналь- ное	10 атм
4	Давление рабочей среды максималь- ное	16
5	Пропускная способность номинальная	50 л/мин
6	Пропускная способность макси- мальная	60 л/мин
7	Рабочая температура жидкости	−55 … +120 °C
8	Перепад давления на фильтроэле- менте, при котором открывается перепускной клапан	9 ± 2 атм
9	Гидравлическое сопротивление фильтра на жидкости АМГ 10 при температуре 60°С и номинальном расходе	1,5 атм

МОДЕЛИРОВАНИЕ ТЕЧЕНИЯ ЖИДКОСТИ ЧЕРЕЗ ЭЛЕМЕНТАРНЫЙ ОБЪЕМ СЕТКИ

Моделирование течения жидкости через элементарный объем фильтрующей сетки выполняется на первом этапе моделирования (микроуровень) с целью получения коэффициента пористости для расчета фильтра на втором этапе. Подготовка геометрии включает:

 создание твердотельной модели фильтровальной сетки и формирование фильтропакета средствами программных продуктов КОМПАС 3D, SolidWorks и т.д.;

 коррекции полученной твердотельной модели;

3) выделение проточной части в ANSYS Design Modeler сопряжено с рядом особенностей. После создания геометрии фильтрующей и каркасной сетки для верного импорта ее в Design Modeler необходимо утопить основу и уток друг в друге путем увеличения диаметра основы и утка на 1–2 мкм. Таким образом, контакт между основой и утком становиться не точечным, а поверхностным, что делает сетку легко импортируемой и обрабатываемой. Внешний вид проточной части элементарного объема приведен на рис. 2.

Рис. 2. Проточная часть элементарного объема фильтропакета с размером 0,6 × 0,69 × 1,4 мм

Полученная таким образом геометрия проточной части элементарного объема фильтропакета имеет размеры параллелепипеда со сторонами 0,695×0,690×1,4 мм. Его площадь на входе равна:

$$F = 0,695 \cdot 10^{-3} \cdot 0,690 \cdot 10^{-3} = 4,797915 \cdot 10^{-7} \text{ m}^2.$$
(7)

Расчетная сетка создается в модуле CFX Mesh. Размер поверхностной сетки колеблется в пределах 0,003...0,01 мм, размер ячейки составляет 0,01 мм. Толщина пограничного слоя – 0,01 мм. Сетка содержит тетраэдрические конечные элементы с пограничным слоем из элементов призматической формы. Число расчетных узлов: 2 148 526, число расчетных ячеек: 11 121 566.

В качестве граничных условий выбирается статическое давление на входе и статическое давление на выходе. Режим течения считается ламинарным. Относительное давление в расчетном домене – 0 атм.

При данном выборе граничных условий результатом моделирования будут расход на выходе, что даст возможность построить расходноперепадную характеристику элементарного объема фильтроэлемента.

Рабочая жидкость, использующаяся при численном моделирование: масло Shell T46 с плотностью 872 кг/м³ и вязкостью 80 сСт.

Число итераций для одной точки составляет в среднем от 14 до 17 шт.

Для сбора результатов численного моделирования использовался электронный протокол, по которому строились расходно-перепадные характеристики. Расходно-перепадная характеристика, построенная по результатам моделирования, приведена на рис. 3.

Рис. 3. Расходно-перепадная характеристика для элементарного объема фильтропакета

Уравнение прямой, полученное аппроксимацией линией тренда в MS Excel:

$$Q = 0,0055 \cdot \Delta p. \tag{8}$$

Таким образом, согласно (3) коэффициент объемной пористости для данной фильтровальной сетки будет равен (с учетом толщины фильтропакета L = 0,338 мм):

$$K_{\rm np} = \frac{\mu L \cdot a}{F} =$$

= $\frac{0,05668 \cdot 0,338 \cdot 10^{-3} \cdot 0,0055}{4,797915 \cdot 10^{-7}} = (9)$

= 0,2196.

Картины распределения поля давления и векторов скоростей для перепада давления на фильтроэлемента равном 1 атм и 10 атм представлена на рис. 4 и 5 соответственно.

Рис. 4. Картина распределения поле давления и скоростей для перепада 1 атм

Рис. 5. Картина распределения поле давления и скоростей для перепада 10 атм

На основе анализа картины распределения поля давления при перепадах давления на фильтроэлементе, составляющих 1 и 10 атм, можно заключить, что основные потери имеют место на фильтровальной сетке в каналах между основой и утком. Из анализа картины поля скорости для перепадов давления, составляющих 1 и 10 атм, следует, что максимальные скорости достигаются на фильтрующей сетке. Стоячая зона за каркасной сеткой увеличивается с увеличением перепада давления, что при дальнейшем повышении давления ведет к переходу на нестационарный характер обтекания каркасной сетки со специфической картиной течения (дорожка Кармана).

МОДЕЛИРОВАНИЕ ТЕЧЕНИЯ ЧЕРЕЗ ФИЛЬТР

Моделирование течения в фильтре от входа до выхода выполняется на втором этапе методики (макроуровень) с целью получения расходноперепадной характеристики фильтра и картины течения через отсечной и перепускной клапан.

Для моделирования течения в фильтре необходима твердотельная модель фильтра. Подготовка геометрии осуществляется в два этапа: 1) коррекция геометрии; 2) выделение проточной части в Design Modeler. В результате обработки геометрии получаются три расчетных домена:

- 1) домен входа жидкости;
- 2) домен шторы (пористое тело);
- 3) домен выхода жидкости (рис. 6).

Рис. 6. Расчетные домены: *1* – входа; *2* – шторы; *3* – выхода

Расчетная сетка создается в программе CFX Mesh. Размер поверхностной сетки от 0,36...1 мм, размер ячейки телесной сетки 1 мм. Толщина пограничного слоя – 1 мм. Сетка содержит тетраэдрические конечные элементы с пограничным слоем из элементов призматической формы. Число расчетных узлов: 1 652 786, число расчетных ячеек: 7 489 678.

В качестве граничных условий задается расход на входе и статическое давление на выходе. Режим течения считается турбулентным. Относительное давление в расчетном домене – 0 атм.

Для сбора результатов численного моделирования использовался электронный протокол, по которому строилась расходно-перепадная характеристика, представленные на рис. 7.

Картина распределения поля давления для расхода через фильтр 5 л/мин и 45 л/мин представлена на рис. 8.

Рис. 8. Распределение поля давлений в фильтре для расхода: *a* – 5 л/мин; *б* – 45 л/мин

Поле давления для расхода 5 л/мин практически однородно на всем проточном тракте фильтра. Влияние пористого тела на поле давления отсутствует. Картина распределения поля давления для расхода 45 л/мин показывает существенные потери давления на входе в фильтр и незначительную неравномерность давления в пористом теле (домен штора).

Рис. 9. Распределение поля скоростей в фильтре для расхода: *а* – 5 л/мин; *б* – 45 л/мин.

Картина распределения поля скоростей для расхода через фильтр 5 л/мин и 45 л/мин представлена на рис. 9.

Поле скоростей для расхода 5 л/мин показывает неполное заполнение пористого домена жидкостью. Основная часть жидкости протекает через первые два ряда отверстий в основание 11 (рис. 1). Скорость течения жидкости в пористом домене 0,56 – 0,67 м/с. Поле скоростей для расхода 45 л/мин показывает полное заполнение пористого домена и повышение скорости в пористом теле до 4 – 6 м/с. Максимальное значение скорости также достигается при обтекание отсечного клапана – 15,79 м/с.

выводы

Приведенная выше методика позволяет получить предварительные гидравлические характеристики фильтров как поверхностной, так и объемной фильтрации. Максимальная погрешность моделирования при номинальном расходе через фильтр составляет не более 29%, что обусловлено допущениями, принятыми при моделировании, в том числе необходимостью моделирования сначала элементарного объема, а затем всего фильтра как пористого тела. Необходимость поэтапного моделирования продиктована большой размерностью вычислительной задачи, обусловленной исключительной малостью расчетных ячеек: размер поверхностной сетки необходимо устанавливать в пределах 0,003...0,01 мм. Таким образом, количество расчетных ячеек указанных размеров, необходимое для расчета всего фильтра, превысит несколько миллиардов.

В ходе моделирования также выявлено, что наибольшие потери давления достигаются при обтекании жидкостью открытого отсечного клапана 4 (рис. 1), в функции которого входит предотвращение потерь рабочей жидкости при замене фильтроэлемента.

СПИСОК ЛИТЕРАТУРЫ

1. ANSYS CFX 12.1 Theory Guide. April 2009. ANSYS Inc.

2. Целищев Д. В., Константинов С. Ю. Исследование влияния эффекта кавитации на расходноперепадные характеристики струйных устройств. /IX МНТК «ИнЭРТ-2010». Ростов н/Д: ИЦ ДГТУ, 2010. С. 819–827.

ОБ АВТОРАХ

Гарипов Артур Альбертович, м.н.с. кафедры прикладной гидромеханики. Дипл. магистра (УГАТУ 2008). Иссл. в обл. математического моделирования течений жидкости в фильтрах.

Константинов Сергей Юрьевич, аспирант той же каф. Дипл. магистра (УГАТУ 2012). Иссл. в обл. математического моделирования кавитационных течений.

Тук Дмитрий Евгеньевич, главный конструктор ОАО УАП «Гидравлика». Дипл. инж.-мех. (УАИ, 1980). Иссл. в обл. фильтрации жидкости.

Целищев Дмитрий Владимирович, доцент той же каф. Канд. техн. наук по гидравл. машинам (УГАТУ, 2010). Дипл. магистра (УГАТУ, 2006). Иссл. в обл. электрогидр. рулевых приводов для систем управления летательными аппаратами.