Вестник УГАМУ

МАШИНОСТРОЕНИЕ

УДК 621.434

С. Н. Атанов

ИССЛЕДОВАНИЕ ДОЗАРЯДКИ ЧЕТЫРЕХТАКТНОГО ДВИГАТЕЛЯ ЧЕРЕЗ ВПУСКНОЙ КЛАПАН ВОЛНОЙ СЖАТИЯ, ГЕНЕРИРУЕМОЙ В ПРОЦЕССЕ ВЫПУСКА

Рассматриваются результаты исследований возможности использования интенсифицикации волновой дозарядки четырехтактного бензинового двигателя «УМЗ-341» воздухом через дополнительный волнообменный канал и впускной клапан волной сжатия выхлопа. Расчеты проведены в современном пакете для численного анализа поршневых двигателей и газопроводов «Horsepower Lab 1D». Установлено, повышение наполнения двигателя на 11 процентов по сравнению с классической дозарядкой отраженной волной сжатия впуска из впускного настроенного канала при использовании волн в выпускном канале для продувки. *Бензиновый, четырехтактный, двигатель, выхлоп, дозарядка, волновой наддув, впускной клапан*

введение

В течение всей истории поршневых двигателей внутреннего сгорания (далее двигателей) и особенно в последние десятилетия все большее значение приобретает такой конкурентный показатель двигателя, как коэффициент наполнения, определяющий и все прочие удельные показатели двигателя. Максимальный коэффициент наполнения в четырехтактных поршневых гоночных двигателях составляет 1,3 [1]. Он получен сначала (в середине прошлого века) практически на гоночном двигателе NSU, имеющем рабочий объем, равный 250 см³, степень сжатия, равную 12, при частоте вращения, равной 20000 об/мин, а потом (в 70-х гг. прошлого века) обоснован теоретически профессором Б. П. Рудым [2] и на основе математического моделирования им выведена эмпирическая формула для предельного коэффициента наполнения

$$\eta_{\nu}^{*} = 1,33 \, \frac{\varepsilon}{\varepsilon - 1} \, ,$$

где є – степень сжатия.

Такие высокие коэффициенты наполнения получены на относительно конструктивно несложных системах газообмена, представляющих собой настроенные индивидуальные для каждого цилиндра четырехтактного двигателя впускной и выпускной каналы постоянного сечения. Их проходное сечение и длина должны быть согласованы с рабочим объемом, фазами газораспределения и частотой вращения. Повышение наполнения происходит за счет волновой продувки рабочей камеры и за счет газодинамического наддува (дозарядки) рабочей камеры воздухом через впускной клапан. При всасывании воздуха во впускном канале формируется волна разрежения, которая, отражаясь от открытого конца впускного канала, превращается в отраженную волну сжатия, дозаряжающую рабочую камеру двигателя в конце процесса впуска.

Данная работа посвящена исследованию при помощи имитационного компьютерного моделирования метода интенсифицирования дозарядки. Для примера выбран серийный стационарный среднеоборотный четырехтактный бензиновый одноцилиндровый двигатель внутреннего сгорания. В исследуемом методе более эффективно используется располагаемая работа выхлопных газов для интенсификации волнового (динамического) наддува (дозарядки) рабочей камеры двигателя воздухом через впускное окно. В двигателе для этого имеется дополнительный волнообменный канал, сообщающий начало выпускного канала вблизи рабочей камеры с началом (входом из окружающей среды или ресивера) впускного канала. Волна сжатия выхлопа проходит по дополнительному волнообменному каналу во впускной канал и интенсифицирует дозарядку.

СОСТОЯНИЕ ВОПРОСА

В настоящее время наиболее технически совершенными являются штучные гоночные и серийные автомобильные многоцилиндровые двигатели. Для повышения коэффициента наполнения и других удельных показателей, в том числе литровой мощности, в большинстве этих двигателей используется настройка газовоздушного тракта (ГВТ). Т.е. для заранее заданного режима работы двигателя подбираются фазы газораспределения и время-сечение клапанов (окон), площади поперечного сечения и

Контактная информация: 8 (347) 272-84-05

длины впускного и выпускного каналов. В современных настроенных ГВТ используются как конструктивно простейшие конструкции, так и сложные агрегаты с подвижными элементами, обеспечивающими изменение эффективной настроенной длины, а иногда и площади впускных каналов. Применяются механизмы изменения фаз газораспределения и времени-сечения клапанов [3]. Но предельный коэффициент наполнения остается для них пределом. Регулирующие механизмы и системы лишь расширяют диапазон высокого коэффициента наполнения по частоте вращения коленчатого вала.

Настройка впускных и выпускных каналов позволяет использовать располагаемую работу газов (свежего заряда или продуктов сгорания) в рабочей камере двигателя. Эти настроенные системы широко распространены. Будем называть их классическими. Однако, как известно, располагаемая работа продуктов сгорания в таких системах используется не полностью [2].

Как известно [2], фирма NSU провела более 60 000 опытов для подбора параметров ГВТ одноцилиндрового гоночного двигателя. Очевидно, что это потребовало существенных материальных затрат и времени.

Профессором Б. П. Рудым разработана теория газообмена ДВС [2], включающая математический аппарат, позволяющий с высокой точностью проводить вычислительные эксперименты на компьютерных моделях ГВТ двигателей.

В настоящее время известно несколько систем имитационного моделирования газодинамических процессов в ГВТ двигателя. Б. П. Рудым разработаны «нульмерные» и «одномерные» термо- газодинамические математические модели одномерного нестационарного движения газа в элементах ГВТ основанные на основных законах сохранения, поэтому они являются наиболее адекватными и дают почти на порядок большую точность. Б. П. Рудым и С. Р. Березеным проведены вычислительные эксперименты, построены диаграммы влияния различных конструктивных параметров ГВТ и частоты циклов на коэффициент наполнения в обобщенных переменных [7]. Эти диаграммы позволяют определять коэффициент наполнения в зависимости от значения параметров ГВТ выполненного по классической схеме системы газообмена.

На основе работ Б. П. Рудого разработаны Система имитационного моделирования «Альбея» для работы на персональных компьютерах и современный пакет для численного анализа поршневых двигателей и газопроводов «Horsepower Lab 1D, v.0.99», работающий как в операционной системе Windows, так и в Linux [8]. В «Альбее» и «Horsepower Lab 1D».

Принципиальное преимущество систем имитационного моделирования заключается в том, что можно в любой точке модели в любой момент времени определить значение любого параметра, а также определять любые интегральные параметры, например коэффициент наполнения. В этих условиях при разработке новых двигателей или доводке экспериментальные лабораторные эксперименты, по меньшей мере на начальном этапе нецелесообразны и можно с меньшими затратами в вычислительном эксперименте проиграть необходимые ва-рианты конструкции ГВТ, а затем в «железе» провести необходимый минимум экспериментов.

Автором в соавторстве с Рудым предложен метод повышения предельного коэффициента наполнения за счет более полного использования располагаемой работы продуктов сгорания посредством сохранения, отражения и возвращения волн сжатия выхлопа к выпускному окну рабочей камеры двигателя для дополнительной дозарядки воздухом. Для этого необходим выброс продувочного воздуха в выпускной канал и повторное открытие выпускного клапана после закрытия впускного клапана. Для реализации этого метода может быть использован профилированный выпускной трубопровод, который подобен настроенному выпускному трубопроводу, используемому в двухтактных двигателях. Он имеет участок постоянного поперечного сечения, расширяющийся и сужающиеся участки.

Попытки исследования возможности повышения коэффициента наполнения относительно предельного коэффициента наполнения классических настроенных ГВТ показывают эффективность предложенного метода и его перспективность [3]. Однако в предложенном ГВТ усложняется конструкция выпускных кулачков распределительного вала. Также к недостаткам предложенного метода следует отнести значительный объем настроенной выпускной системы.

Другим методом повышения предельного коэффициента наполнения за счет более полного использования располагаемой работы продуктов сгорания, предложенным автором в соавторстве с Рудым является передача части волны сжатия выпуска к впускному клапану для интенсификации процесса дозарядки во впускной системе. Для этого начало выпускного канала вблизи выпускного клапана сообщают с началом впускного канала при помощи дополнительного настроенного волнообменного канала. Способ работы ГВТ реализующий этот метод запатентован [4] (рис. 1).

Рис. 1. Схема ГВТ с дозарядкой волной сжатия выпуска через впускной клапан: 1 – выпускной патрубок; 2 – выпускной настроенный канал; 3 – дополнительный волнообменный настроенный канал; 4 – зазор между каналами с клапаном впуска воздуха в систему; 5 –впускной настроенный канал

Краткая феноменологическая модель этой системы с интенсифицированной дозарядкой следующая. При выпуске газов через выпускной клапан в выпускной патрубок и далее в настроенном выпускном канале и в дополнительном волнообменном настроенном канале формируются волны сжатия выпуска. Выпускной газ тоже поступает в дополнительный настроенный волнообменный канал. Волна сжатия выпуска в выпускном настроенном канале после отражения от его открытого в окружающую среду или ресивер конца возвращается к выпускному клапану и началу настроенного волнообменного канала отраженной волной разрежения. Эта волна разрежения обеспечивает продувку рабочей камеры двигателя, а также поступает в дополнительный настроенный волнообменный канал и обеспечивает отсасывание (продувку) выпускных газов, попавших в дополнительный настроенный волнообменный канал. Продувка, или, другими словами, замещение отработавших газов воздухом, повышает коэффициент наполнения и за счет увеличения массы воздуха, и за счет снижения температуры газов в рабочей камере, что в дальнейшем повысит коэффициент наполнения в процессе всасывания, так как уменьшится подогрев поступающего воздуха и повышение его давления. После продувки начинается всасывание воздуха из впускного настроенного канала в рабочую камеру двигателя

через впускной клапан. При этом формируется волна разрежения впуска. Она движется к открытому концу впускного настроенного канала, где отражается волной сжатия. Эта отраженная волна сжатия дозаряжает рабочую камеру двигателя воздухом через впускной клапан в конце процесса впуска, увеличивая коэффициент наполнения посредством повышения давления, плотности и массы воздуха. Волна сжатия выпуска, которая движется по дополнительному волнообменному настроенному каналу, переходит во впускной настроенный канал и накладывается на отраженную волну сжатия впуска, увеличивая давление перед впускным клапаном в конце процесса впуска, а значит, дозарядка интенсифицируется. Таким образом, коэффициент наполнения повышается.

Этот метод повышения предельного коэффициента наполнения проверялся в системе имитационного моделирования «Альбея» без учета потерь и оказался эффективным для четырехтактных двигателей [5]. Однако при лабораторно-экспериментальной проверке этого метода интенсификации дозарядки на карбюраторном тихоходном двигателе возникли известные трудности. Значительная длина дополнительного волнообменного настроенного канала вызывала соответственно существенные потери в волне по длине канала. Использование карбюратора вызывало проблемы с дозированием топлива. Первоначально коэффициент наполнения снижался, и как оказалось, отработавшие газы выбрасывались во впускной канал. Дополнительно проведенный анализ картины волн в этом ГВТ выявил наличие вредоносных волн разрежения. Одна из них - это волна разрежения впуска, проходящая мимо щели в дополнительный волнообменный настроенный канал, и соответственно, подсасывающая выпускные газы из выпускного настроенного канала в дополнительный волнообменный настроенный канал. Вторая вредоносная волна - это отраженная волна разрежения, возникающая при отражении волны сжатия выпуска, двигающейся по дополнительному волнообменному каналу, от щели и ресивера, которая также возвращаясь к началу дополнительного волнообменного настроенного канала подсасывает выпускные газы из выпускного настроенного канала в дополнительный волнообменный настроенный канал. Модернизация метода газообмена установкой обратных впускных клапанов в боковой поверхности дополнительного волнообменного настроенного канала на середине его длины и в разрыве между впускным и дополнительным волнообменным настроенными каналами в рамках мысленного эксперимента позволила первую вредоносную волну отсечь от выпускного настроенного канала на обратном впускном клапане, расположенном на середине длины дополнительного волнообменного настроенного канала. А вторую вредоносную волну ликвидировать и повысить эффективность волны сжатия выпуска. В лабораторных экспериментах подтверждена продувка дополнительного волнообменного настроенного канала. А в вычислительных экспериментах при моделировании обратных впускных клапанов в виде обратных впускных клапанов, установленных на входе в небольшой ресивер сообщенный с модулем «Щель» получено повышение коэффициента наполнения даже в тихоходном двигателе.

В системе настроенных каналов с дополнительным волнообменным каналом воздух всасываемый в ГВТ используется не только для наполнения рабочей камеры двигателя, но также для продувки начального участка дополнительного волнообменного настроенного канала и его часть уходит в выпускной канал минуя рабочую камеру двигателя. Поэтому главный показатель – коэффициент наполнения в реальном эксперименте определить невозможно, а определить его можно только в вычислительном эксперименте.

ПОСТАНОВКА ЗАДАЧИ

Цель работы: исследовать возможности интенсификации волновой дозарядки одноцилиндрового среднеоборотного бензинового двигателя воздухом через дополнительный волнообменный канал и впускной клапан волной сжатия выпуска.

Задачи:

 Разработать имитационные модели бензинового двигателя с настроенными каналами газообмена, обеспечивающими:

• продувку и классическую дозарядку через впускной клапан;

 продувку и интенсифицированную дозарядку через впускной клапан волной сжатия выпуска через дополнительный волнообменный канал, накладываемой на отраженную волну сжатия впуска.

2) провести сравнительные расчеты двигателя с такими системами каналов газообмена.

МЕТОДИКА ИССЛЕДОВАНИЙ

Для экспериментов выбран имеющийся одноцилиндровый карбюраторный двигатель «УМЗ-341» с частотой вращения 3600 мин⁻¹. Его преимущество по сравнению с ранее исследованным заключается в более высокой частоте вращения, а значит, он будет иметь меньшие потери в волнах по длине каналов и, соответственно, больший коэффициент наполнения. Учитывая современный уровень развития систем впрыска топлива, карбюратор может быть заменен форсункой.

Поскольку определить коэффициент наполнения в лабораторном эксперименте для одной из исследуемых схем газообмена невозможно, вычислительный эксперимент выбран в качестве основного для настоящего исследования.

Поскольку расчеты выбранного двигателя ранее не проводились, первоначально определены параметры впускного в выпускного каналов для классически настроенного ГВТ (оптимальная схема ГВТ) с использованием диаграмм влияния различных конструктивных параметров ГВТ и частоты циклов на коэффициент наполнения в обобщенных переменных [7].

Собраны две модульные имитационные модели двигателей со сравниваемыми газовоздушными трактами в пакете для численного анализа поршневых двигателей и газопроводов «Horsepower Lab 1D, v.0.99» [8]. Первая (1) – модульная имитационная модель двигателя с классической настройкой ГВТ (рис. 2); вторая (2) – модульная имитационная модель двигателя с дополнительным волнообменным настроенным каналом для интенсификации дозарядки рабочей камеры волной сжатия выпуска через впускное окно (рис. 3).

Рис. 2. Модульная имитационная модель 1

В модульных имитационных моделях заданы исходные и начальные данные двигателя и рассчитанные по зависимостям обобщенных переменных параметры настроенных впускной и выпускной труб.

Учитывая необходимость экспериментального подтверждения результатов расчетов в будущем, диаметры и, соответственно, площади проходных сечений настроенных каналов выбраны из ряда стандартных размеров (ближайший диаметр) труб.

Рис. 3. Модульная имитационная модель 2

Сформированы перечни выходных данных, выводимых в табличном и графическом виде в развернутой индикаторной диаграмме «Экран», выводимой на экран компьютера после завершения расчета по требованию и в виде диаграммы-анимации распределений параметров по продольной координате ГВТ двигателя -«Трек». Координата (абсцисса) на диаграммеанимации «Трек» для имитационной модели 2 увеличивается от нуля на выпускном клапане до максимальной на конце выпускного настроенного канала, выходящего в выпускной ресивер. Но на ней последовательно откладываются каналы и емкости ГВТ двигателя с увеличением координаты в направлении движения основных волн сжатия (тех, которые используются в том же цикле работы, в котором они возникли). Это следующие каналы: выпускной патрубок в головке цилиндра двигателя; дополнительный волнообменный настроенный канал (большее

значение координаты на нагнетающем воздух конце у впускного настроенного канала); впускной настроенный канал; впускной патрубок в головке цилиндра двигателя; цилиндр; повторно выпускной патрубок в головке цилиндра; выпускной настроенный канал.

Выбраны интегральные параметры цикла для вывода в текстовое окно «Indicator».

Обратные впускные клапаны в данной модульной имитационной модели заданы как обратные идеальные впускные клапаны, установленные на ресиверах еще более малого объема, составляющего третью часть рабочего объема рабочей камеры двигателя. Разрывы в тройниках моделируются как Т-образные тройники.

При исследовании первоначально определялся коэффициент наполнения двигателя с классической настройкой впускного и выпускного каналов, параметры которых получены из расчета по безразмерным комплексам. Затем для двигателя с диаметрами настроенных впускного и выпускного каналов, взятых ближайшими из ряда диаметров наиболее доступных стандартных труб.

Затем исследовалось влияние площади выпускного канала на коэффициент наполнения для выявления степени значимости наличия разности площадей впускного и выпускного каналов. Внутренние диаметры также выбирались из ряда стандартных труб.

Затем исследовалось влияние площади классически настроенных каналов на коэффициент наполнения двигателя.

Исследована возможность приближения впускного обратного клапана вместе с ресивером и тройником из средней части дополнительного волнообменного настроенного канала ближе в выпускному клапану, но с сохранением качественной продувки начального (горячего) участка этого канала свежим воздухом через упомянутый обратный клапан.

Исследовано влияние на коэффициент наполнения величин площади и длин двухгазового волнообменного и впускного каналов системы с дозарядкой выхлопом через впускной клапан для случая, когда площадь всех каналов, кроме коротких патрубков в головке реального двигателя «УМЗ 341», равны. Длины выпускных каналов одинаковы. Площади каналов в каждой системе равные.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Результаты лучшего вычислительного эксперимента на двигателе с классической настройкой впускного и выпускного каналов с наибольшим коэффициентом наполнения (рис. 4) показывают хорошие условия для волновой продувки рабочей камеры двигателя отраженной волной разрежения выпуска (разрежение за выпускным клапаном в период перекрытия клапанов в районе 360° поворота коленчатого вала (ПКВ) в средней части диаграммы) и дополнительно остаточной отраженной четвертой волной сжатия впуска (повышенное давление перед впускным клапаном, там же). А также хорошие условия для волновой дозарядки рабочей камеры двигателя отраженной волной сжатия впуска в конце процесса впуска (повышенное давление перед впускным клапаном $P_{_{\rm B\Pi}}$, превышающее давление в цилиндре, Р₁₁ в правой верхней части диаграммы).

Рис. 4. Развернутая индикаторная диаграмма двигателя с классическим ГВТ по углу ПКВ: $P_{\rm II}$ – давление в цилиндре (диапазон давлений на диаграмме – от минус 0,05 до плюс 0,2 МПа); $P_{\rm B}$ – давление за выпускным клапаном; $P_{\rm BII}$ – давление перед впускным клапаном; $G_{\rm B}$ – расход отработавших газов через выпускной клапан (диапазон расходов на диаграмме – от минус 0,25 до плюс 1 кг/с); $G_{\rm BII}$ – расход свежего заряда через впускной клапан

Результаты лучшего вычислительного эксперимента на двигателе с интенсифицированной дозарядкой рабочей камеры воздухом через дополнительный волнообменный канал и впускной клапан волной сжатия выпуска с наибольшим коэффициентом наполнения (рис. 5) показывают по сравнению с двигателем с классически настроенными впускным и выпускным каналами несколько худшие условия для волновой продувки рабочей камеры двигателя отраженной волной разрежения выпуска (меньшее разрежение за выпускным клапаном в период перекрытия клапанов в районе 360° поворота коленчатого вала (ПКВ) в средней части диаграммы) и дополнительно остаточной отраженной третьей волной сжатия впуска (меньшее повышение давления перед впускным клапаном, там же). Но сравнительно лучшие условия для волновой интенсифицированной дозарядки рабочей камеры двигателя отраженной волной сжатия впуска и волной сжатия выпуска в конце процесса впуска (повышенное давление P_{вп} перед впускным клапаном, превышающее давление в цилиндре, в правой верхней части диаграммы) и большее по модулю значение расхода воздуха G_{вп} через выпускной клапан в середине процесса впуска, в том числе кратковременное повышение расхода воздуха через впускной клапан (в нижней правой части диаграммы).

Рис. 5. Развернутая индикаторная диаграмма двигателя с интенсифицированной дозарядкой по углу ПКВ

Фрагменты развернутых индикаторных диаграмм двигателей с ГВТ обеих схем при максимальных коэффициентах наполнения для удобства сравнения наложены друг на друга (рис. 6).

Рис. 6. Сравнение развернутых индикаторных диаграмм исследованных методов волновой дозарядки (наддува)

Диаграмма показывает наличие ожидаемого повышенного давления во впускном трубопроводе перед впускным клапаном $P_{\rm BII}$ и в цилиндре $P_{\rm II}$ в начале сжатия (на диаграмме вверху справа), а также повышение расхода свежего заряда (воздуха) на впуске $G_{\rm BII}$ в момент подхода волны сжатия выпуска (на диаграмме внизу справа). Очевидна дополнительная интенсифицированная дозарядка.

Волновая картина в ГВТ в момент максимального заброса выхлопных газов из выпускного канала в волнообменный канал (рис. 7) показывает:

1. Формирование интенсивной волны сжатия выпуска, движущейся вправо в волнообменном канале по направлению к впускному каналу (выделено жирной линией в верхней левой части диаграммы) (диапазон давления на диаграмме -0,05 ... +0,2 МПа).

2. Заброс выхлопных газов ($K_{C3} = 0$) в начальный участок волнообменного канала (выделено жирной линией в средней по высоте левой части диаграммы) (диапазон K_{C3} на диаграмме -4 ... +6).

Рис. 7. Экран «Трек», 322 град поворота коленчатого вала (ПКВ): *Р* – давление; *К*_{C3} – доля свежего заряда (воздуха) в смеси; *T* – температура газа

3. Высокую температуру газов в начальном участке волнообменного канала (выделено жирной линией в нижней левой части диаграммы) (около 1000 К при диапазоне температуры на диаграмме 0 ... 2500 К).

Картина процесса (рис. 8) в момент подхода волны сжатия выпуска по волнообменному каналу к впускному каналу, через который в это время происходит всасывание в рабочую камеру и в котором формируется волна разрежения, показывает:

Рис. 8. Экран «Трек», 440 град ПКВ

 сохранение достаточно интенсивной волны сжатия выпуска в волнообменном канале (волна выделена жирной линией в центре на диаграмме);

присутствие отраженной волны разрежения выпуска в выпускном канале и в начальном участке волнообменного канала, прилегающем к выпускному патрубку цилиндра, которая очищает волнообменный канал отсасывая отработавшие газы в выпускной канал и далее в окружающую среду (участки функциональной зависимости давления, справа и слева чуть меньше цены деления по оси абсцисс).

Картина процесса (рис. 9) в момент открытия выпускного окна показывает полную продувку волнообменного канала от отработавших газов и наличие большого количества (более половины объема) свежего заряда в начальном участке выпускного трубопровода (K_{C3} и *T*, выделенные толстыми линиями в правой части диаграммы). Волнообменный канал готов к следующему циклу работы.

Рис. 9. Экран «Трек», 105 град ПКВ

Таким образом, при использовании настроенной системы газообмена с волнообменным дополнительным каналом для интенсифицированной волновой дозарядки одноцилиндрового средне-оборотного бензинового двигателя волной сжатия выхлопа через впускной клапан возможно повышение коэффициента наполнения бензинового двигателя внутреннего сгорания относительно классической системы с дозарядкой и продувкой на 11,1 % и индикаторной мощности на 7,41 % при увеличении длины каналов газообмена на 5,10 м, а объема системы газообмена на 2,39 л или относительного объема на 7,17.

ПРИЛОЖЕНИЕ РЕЗУЛЬТАТОВ

Полученные результаты позволяют приступить к разработке и изготовлению экспериментальной установки на базе бензинового двигателя «УМЗ-341» для лабораторного подтверждения возможности интенсифицированной волновой дозарядки волной сжатия выхлопа через дополнительный волнообменный канал и впускной клапан.

вывод

Разработанные имитационные модели бензинового двигателя как с классической настройкой, так и с настроенной системой газообмена, включающей дополнительный волнообменный канал, и соответствующие сравнительные расчеты показали возможность интенсификации волновой дозарядки одноцилиндрового среднеоборотного четырехтактного бензинового двигателя воздухом через дополнительный волнообменный канал и впускной клапан волной сжатия выхлопа.

СПИСОК ЛИТЕРАТУРЫ

1. Бекман В. В. Гоночные мотоциклы. Л.: Машиностроение, Ленингр.отд-ние, 1983. 271с.

2. **Рудой Б. П.** Теория газообмена ДВС : учеб. пособие / Б. П. Рудой. Уфа : УАИ, 1978. 109 с.

3. Ханк Г. Турбодвигатели и компрессоры: справочное пособие. М.: Астрель: АСТ, 2007. 351 с.

4. **Атанов С. Н.** Метод увеличения коэффициента наполнения 4-тактного ДВС // Вестник УГАТУ. Уфа, 2009. Т. 12. № 2 (31) С. 59–61.

5. Атанов С. Н. Пат. № 2066002 РФ, МПК7 F 04 F 11/02, F 02 B 33/42. Способ распределения рабочих тел волнового обменника давления и устройство для его осуществления / Атанов С. Н.; опубл. 1996.08.27.

6. Атанов С. Н. Возможности повышения предельного коэффициента наполнения 4-тактного ДВС // Сб. тезисов второй науч.-техн. конф. молодых специалистов, посвященной годовщине образования объединения ОАО «УМПО». Уфа: УМ-ПО, 2006. С. 31–33.

7. Рудой Б. П. Расчет на ЭВМ показателей газообмена ДВС : учеб. пособие / Б. П. Рудой, С. Р. Березин. Уфа: УАИ, 1979. 101 с.

8. Черноусов А. А. Свид. об офиц. рег. прог. для ЭВМ 2010613235 РФ. Horsepower Lab 1D / Черноусов А. А.; зарег. 2010.05.17.

ОБ АВТОРЕ

Атанов Сергей Николаевич, ст. преп., зав. лаб. каф. двигателей внутреннего сгорания. Дипл. инж.-мех. (УГАТУ, 1987). Иссл. в обл. волнового перемещения воздуха использованием выхлопа поршневых двигателей.