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Abstract. The problem of flying object’s trajectory prediction in material transportation by throwing is con-
sidered. Neural Network Prediction is proposed as a learning-based method for forecasting of object future 
position. Preliminary evaluation of the approach, using simulation software, is made. This evaluation show, 
that approach can satisfy requirements if equipment for throwing and measuring is precise. 
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1. INTRODUCTION 

The task of an object’s transportation often 

arises in industry (e. g. relocation of processed de-

tails from one machine tool to another). The raising 

demand for individual products and an increased 

number of product’s variants over the last decades 

has raised the requirements for flexibility and speed 

of material transportation system.  

The normal approach to automation of material 

transportation consists in application of conveyor 

systems (belt conveyors, screw conveyors, etc.). 

The lacks of this method are low speed and high 

power consumption. 

Alternative methods for solving the object’s 

transportation problem are connected with throw-

ing. By the use of such transportation methods, the 

object is thrown from an initial point and caught in 

the destination point. The principle of automatized 

throwing and catching increases the flexibility over 

conveyor belts and other “traditional” ways of 

transportation. 

An important aspect of a throwing-based trans-

portation system is notifying the catching device 

about the place and the time of object interception. 

Object coordinates and velocity at interception time 

are needed to define gripper action. Trajectory pre-

diction provides determination of these parameters, 

based on the information about object flight. This 

task belongs to well-known group of so-called 

time-series forecasting tasks. 

2. RELATED WORK AND MOTIVATION 

Transport-by-throwing as an approach for in-

dustrial transportation was proposed by Frank in 

[1]. Further research in this area was provided in 

[2, 3]. Earlier and in parallel trajectory prediction 

task for robotic catching was considered in [4–7]. 

Trajectory prediction in most of these works was 

based on modeling ballistic flight. 

The following forces have influence on flying 

object [8]: 

1. Gravitation is directed downwards and is 

constant for the flying body. 

2. Pressure air drag is proportional to the veloc-

ity square for bodies, flying in the air with veloci-

ties: 

 2kvFd  . (1) 

The value of k depends on the shape of the object, 

its orientation with regard to motion direction, air 

density. For simple bodies (e. g. spheres) this value 

could be calculated; for more complex objects it 

should be defined empirically [8]. 

3. Viscosity, lift, Karman Vortex Street, Mag-

nus effect, etc. is connected with air flow near the 

object surface. For compact objects there influence 

can be ignored, as its influence is low [8]. For sim-

ple bodies in special conditions they could be cal-

culated using special formulas. Otherwise it is not 

possible to determine accurately influence of these 

effects. 

4. Wind and external air flow also influence on 

flight.  

Due to non-linearity of the flying process and 

the complex modeling it is logical to use learning-

based methods for trajectory prediction. Such 

methods use a set of reference throws and their cor-

responding impact positions to create a prediction 

model. This model predicts the interception point 

based on the parameters of actual flight.  
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3. NEURAL NETWORK TRAJECTORY 

PREDICTION 

The advantage of neural networks prediction is 

that neural networks are able to learn from exam-

ples only and to reveal strongly non-linear depend-

encies in noised training set. For time-series fore-

casting various time-delays neural networks 

(TDNN) are used. TDNN was proposed in [9] 

Basic architecture of such network for parameter 

forecasting is shown on Fig. 1. 

 

 

Fig. 1. Time-delay neural network prediction 

To the network input a reference of objects co-

ordinates is given. The network should predict the 

value of these coordinate after some fixed period. 

During the development of neural network trajecto-

ry predictor (NNTP), following parameters have to 

be defined: 

1. Network Architecture   There are two main 

groups of prediction networks: feedforward and 

recurrent. Recurrent networks have many varieties, 

depending on location of feedbacks in the net. 

Some of them (e. g. NARX) in special situations 

show better results than feedforward networks, but 

for accurate prediction they need known values of 

output parameters at initializing prediction. As the-

se parameters are unknown, in current simulation 

feedforward networks are used. 

2. Number and values of time delays   These pa-

rameters are determined by camera frame rate. 

3. Number of neurons and layers   The optimal 

number of neurons depends on process and cannot 

be calculated. Increasing number of layers cause 

increased processing time, and small accuracy 

grow. As the application is time-sensitive, it seems 

better to use low number of layers. 

4. Input data   Two type of predictors are pro-

posed. Predictor of the irst type consist of three 

separated networks (each with one dynamical input 

and one output), predicting coordinates in x, y and z 

dimension respectively. Predictor of the second 

type is one network with three dynamical inputs 

and three outputs predicting values of x, y and z. 

4. SIMULATION 

Evaluation of the Neural Network Trajectory 

Predictor (NNTP) is made using special simulation 

software. This software is modelling throws of the 

object, its flight under the influence of gravitation 

and air drag, and measurement of its position.  

4.1. Process modeling 

During the simulation of one throw three trajec-

tories are calculated: 

1. “True” trajectory is calculated on the base of 

initial throwing parameters, using motion model; 

2. “Measured” trajectory is calculated based on 

“true” one, using model, that adds measurement 

errors; 

3. “Predicted” trajectory is calculated by NNTP 

based on “measured” trajectory. 

Measured trajectories are used to train neural 

network. When the accuracy of NNTP is evaluated, 

predicted values are being compared with the “true” 

trajectory. This is the advantage of the simulation in 

comparison with experiments on real data. In such 

experiments we the information about the true mo-

tion of the body is missing. 

Throwing model 

Potentially used throwing devices can throw 

object with initial velocity up to 10 m/s [3]. The 

distance of flight in this situation is several meters. 

This is the maximal value; in the majority of exper-

iments smaller velocities are used.  

In the simulation we assumed that throwing de-

vice is adjusted to throw the object with the veloci-

ty 5 m/s, towards the destination point, at an angle 

π/4 rad to the horizon. The differences between var-

ious trajectories are caused by the deviations in ve-

locity and direction of throwing.  

Cartesian and spherical coordinate systems are 

used for the calculations. The thrower and the grip-

per are situated in the coordinate system in the fol-

lowing way: throwing device is located in the 

origin of coordinates, X-axis is directed upwards,  

Z-axis is directed towards the gripper. It is assumed 

that the throwing parameters (velocity, azimuth, 

and zenith) are normally distributed near the nomi-

nal values (5 m/s, 0 and π/4 rad respectively). Mean 

square deviation of these parameters characterise 

the precision of thrower. To evaluate the influence 

of throw precision on prediction accuracy three vir-

tual throwing devices were simulated: 

 Low precision throw (LPT) σv = 0.1 m/s, 

σα = σφ = 0.1 rad; 
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 High precision angle (HPA) σv = 0.1 m/s, 

σα = σφ = 0.01 rad;  

 High precision throw (HPT) σv = 0.01 m/s, 

σα = σφ = 0.01 rad.  

Motion model 

Simulated object is a small sphere with the 

properties of tennis ball. In such situation the influ-

ence of viscosity and Karman Vortex Street is low 

and can be ignored. Drag doesn’t depend on direc-

tion as body is spherical. The true trajectory is cal-

culated iteratively, as: the position of the object in 

each moment is calculated on the base of its previ-

ous position, using formulas: 
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The step of coordinate recalculation is set to 

1 ms, the time of modelling – 500 ms. An example 

of true trajectory set is given the Fig. 3. It consist of 

10 trajectories, generated randomly, using LPT 

model. Fig. 3, a shows horizontal projections of 

generated trajectories, 3, b shows trajectory projec-

tions on XZ-plane. 

Measurement and prediction model 

It is assumed, that object coordinates are meas-

ured with normally distributed error. Within the 

experiment mean square error in each coordinate is 

set to 1 cm. Measurement are made with fixed fre-

quency, which is lower, than frequency of true tra-

jectory calculation. This frequency is set to 100 Hz 

(or one measurement for 10 coordinate’s recalcula-

tions). This is close to the frame rate of the poten-

tially used camera system (about 80 frames per se-

cond).  

According to the task (to predict final part of 

trajectory, based on initial) the following prediction 

model is used.  

X[n+30] = f (X[n-1], X[n-1], X[n-2], …, X[n-10])   (6) 

Target value show predicted coordinates in 

0,3 s after current moment, based on ten previous 

measured values. 

As each measured trajectory consists of 50 time 

steps, we would have 10 operations of predictor: 

 X[41] = f ( X[10], X[9], … , X[1]),  

 X[42] = f ( X[11], X[10], … , X[2]),  

 X[43] = f (X[12], X[11], … , X[3]),  

... 

 X[50] = f (X[19], X[18], … , X[10]).        (7) 

 

 

 

a 

 

b 

Fig. 2. Example trajectory set for training 

4.2. Simulation results 

To evaluate accuracy of the prediction model 

15 training sets were used (5 HPT-sets, 5 LPA-sets 

and 5 LPT-sets). Each set consist of 10 trajectories. 

Preliminary experiments shows that following 

numbers of neurons in hidden layer provides the 

best results: 6 neurons for predicting the value in x-

dimension, 2 neurons for predicting the value in y-

direction, 6 neurons for predicting the value in z-

direction, 4 neurons for complex prediction. 

Feedforward networks (perceptron with one hidden 

layer) were used. Simulation software and predic-

tion model was made using MATLAB. Evaluation 

results (mean square distance between predicted 

and true object coordinate) are given in the Table 1.  

These results show some aspects of NNTP:  

 When HPT is used, Neural Network gives re-

sults, which can be used in work of real 

catching system. 

 More precise throwing cause more precise 

catching. 
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 Three networks, predicting coordinate in 

each dimension separately, usually show bet-

ter accuracy than complex network. 

Table 1 

Mean square distance (in meters), using complex  

and spatial separated prediction 

 

In the Table 2 accuracy values for 5 LPT sets 

are given. 
Table 2 

Mean square distance for  

various training sets 

 σd-1, m σd-2, m 

LPT-1 0,059401 0,080272 

LPT-2 0,058152 0,074897 

LPT-3 0,085465 0,073876 

LPT-4 0,081961 0,080003 

LPT-5 0,084709 0,060641 

 

Parameter σd-1 show mean error, when given 

set was used for training, σd-2 when it was used for 

tests. It can be seen that high values of σd-1 match 

with low values of σd-2 and vice versa. It’s con-

nected with the dispersion of trajectories in the set. 

High dispersion of trajectories provides better train-

ing. Hence, trajectories that provide high dispersion 

should be used for creating training set. 

Second addition is connected with target data. 

Use true target values instead of measured values 

increased the accuracy of prediction e.g. for HPT, 

using true values, mean error would be 2,4 cm in-

stead of 2,6 cm, using measured values. It means 

that more precise measurements of object position 

in catching area during the training set generation 

could increase accuracy. 

Time of processing 100 frames by prediction 

algorithm is about 7 ms for common neural net-

work and about 1.2 ms for spatial-separated model. 

This time is much smaller, than interframe period 

of measuring camera, so it these values of speed 

satisfy task requirements. These are values for im-

plementation in MATLAB Neural Networks 

Toolbox, another implementation, especially paral-

lelized and hardware neural networks could work 

much faster. 

5. CONCLUSION AND FUTURE WORK 

Conclusion 

Two proposed NNTP architectures were evalu-

ated using the simulation software. With precise-

throwing model they show satisfying accuracy. 

Spatial-separated NNTP show better accuracy, than 

common. The speed of prediction meets require-

ments for the catching system. 

Future work 

Important step in future development of NNTP 

is using real-flight data instead of simulation. Using 

real flights prediction of complex-shaped objects 

trajectory could be evaluated. For complex-shaped 

objects not only coordinate are to be measured and 

predicted, but also its orientation. Another part of 

future work is defining of required measurement 

frequency. Probably it would be enough for predic-

tion to use 3 measurements in 100 ms instead of 10.  
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