

 Vol. 17, no. 6 (59), pp. 38-42, 2013.

http://journal.ugatu.ac.ru

ISSN 2225-2789 (Online)

Vestnik UGATU
ISSN 1992-6502 (Print)

UDC 004.7

MODEL BASED DESIGN OF CONTROL SOFTWARE FOR NONLINEAR DISCRETE TIME HYBRID SYSTEMS

V. AL I M G U ZHI N
1 , F. MA R I

 2 , I . ME L A TTI
3 , I . S AL VO

4 , E. TRO NC I
5

1
alimguzhin@di.uniroma1.it,

2
mari@di.uniroma1.it,

3
melatti@di.uniroma1.it,

4
salvo@di.uniroma1.it,

5
tronci@di.uniroma1.it

Sapienza University of Rome, Italy

Submitted 2013, June 10

Abstract. Many Embedded Systems are indeed Software Based Control Systems, that is control systems
whose controller consists of control software running on a microcontroller device. This motivates investiga-
tion on Formal Model Based Design approaches for automatic synthesis of embedded systems control soft-
ware. This paper addresses control software synthesis for discrete time nonlinear hybrid systems. We present
a methodology to over approximate the dynamics of a discrete time nonlinear hybrid system by means of
a discrete time linear hybrid system , in such a way that controllers for are guaranteed to be control-
lers for . We present experimental results on control software synthesis for the inverted pendulum, a chal-
lenging and meaningful control problem.

Keywords: model based design; Embedded Systems; hybrid systems; discrete time.

1. INTRODUCTION

Many Embedded Systems are indeed Software

Based Control Systems (SBCSs). An SBCS consists

of two main subsystems: the controller and the

plant, that together form a closed loop system. Typ-

ically, the plant is a physical system whereas the

controller consists of control software running on a

microcontroller. Software generation from models

and formal specifications forms the core of Model

Based Design of embedded software. This approach

is particularly interesting for SBCSs since in such a

case system level specifications are much easier to

define than the control software behavior itself.

Traditionally, the control software is designed

using a separation-of-concerns approach. That is,

Control Engineering techniques are used to design

functional specifications (control law) from the

closed loop system level specifications, whereas

Software Engineering techniques are used to design

control software implementing functional specifica-

tions. Such a separation-of-concerns approach has

several drawbacks. For example, correctness of the

control software is not formally verified and issues

concerning non-functional requirements (such as

computational resources, control software Worst

Case Execution Time, WCET), are considered very

late in the SBCS design activity and this could lead

to new iterations of the control design (e.g., if the

WCET is greater than the sampling time).

The previous considerations motivate research

on methods and tools focusing on control software

synthesis. The objective is that from the plant mod-

el, from formal specifications for the closed loop

system behavior and from Implementation Specifi-

cations (that is, number of bits used in the quantiza-

tion process) such methods can generate correct-by-

construction control software satisfying the given

specifications.

The tool QKS [1] has been designed following

an SBCS model based design approach. Given a

plant modeled as a Discrete Time Linear Hybrid

System (DTLHS) QKS automatically synthesises

control software meeting given safety and liveness

closed loop specifications. The dynamics of a

DTLHS is modeled as a set of linear constraints

over a set of continuous as well as discrete varia-

bles describing system state, system inputs and dis-

turbances. Although the control software synthesis

problem for DTLHSs is undecidable [3], the semi-

algorithm implemented in QKS usually succeeds in

generating control software.

However, the dynamics of many interesting hy-

brid systems cannot be directly modeled by linear

constraints. This motivates the focus of the present

paper: control software synthesis for nonlinear Dis-

crete Time Hybrid Systems (DTHS).

The present paper is a survey on the on-going

research on Model Based Control Software Synthe-

sis. More technical details can be found in [1–5].

We present a general approach to overapproximate

(that is possibly allowing more behaviours than) a

39 V. Al imguzhin , F . Mari , et a l . ● MODEL BASED DESIGN OF CONTROL SOFTWARE …

given DTHS by means of a DTLHS such

that controllers for are guaranteed to be control-

lers for . Control software for is thus obtained

by giving as input to the tool QKS [1] the linear

plant model . We show the effectiveness of our

approach by presenting experimental results on the

inverted pendulum benchmark, a challenging and

well studied example in control synthesis.

2. BACKGROUND

2.1. Predicates

An expression over a set of variables is

an expression of the form , where

 are possibly non linear functions and are

rational constants. For example,

 are expressions over .

 is a linear expression if it is a linear combina-

tion of variables , i.e. for all ,

 for some . A constraint is an expression of

the form , where is a rational constant.

A predicate is a logical combination of constraints.

A conjunctive predicate is a conjunction of con-

straints. We also write for ,

 for () (), and

 for . Given a con-

straint and a boolean variable , the

guarded constraint (if then) de-

notes the predicate . Similarly,

 denotes . A guarded

predicate is a conjunction of either constraints or

guarded constraints. A guarded predicate is linear if

it contains only linear expressions.

2.2. Control Problem for a Labeled

Transition System

A Labeled Transition System (LTS) is a tuple

 where is a (possibly infinite) set of

states, is a (possibly infinite) set of actions, and :

 is the transition relation of . Let

 and . The set
 is the set of actions admis-

sible in , and
is the set of next states from via . A run or path

for an LTS is a sequence

 of states and actions

 such that . The length
of a finite run is the number of actions in . We

denote with the -th state element of

 , and with the -th action element

of . That is , and . Given

two LTSs and , we

say that overapproximates (notation)

when implies for all

and . Note that defines a partial order over

LTSs.

A controller restricts the dynamics of an LTS

so that all states in a given initial region will even-

tually reach a given goal region. In what follows,

let be an LTS, be, respective-

ly, the initial and goal regions of A controller for

 is a function such that ,

 , if then . The set

 is the set of states

for which at least a control action is enabled. The

closed loop system is the LTS ,

where . We call

a path fullpath if either it is infinite or its last

state has no successors.

We denote with the set of fullpaths

starting in state with action . Given a path in

 , we define as follows. If there exists

 s. t. , then

 . Otherwise,

 . We require since our sys-

tems are non-terminating and each controllable

state (including a goal state) must have a path of

positive length to a goal state. Taking

the worst case distance of a state from the goal

region is
 . A control problem for

 is a triple . A solution to is a con-

troller for such that and for all

 , is finite. An optimal

solution to is a solution to , s.t. for all solu-

tions to , for all we have

 .

3. Discrete Time Hybrid Systems

Definition 1. A Discrete Time Hybrid System is

a tuple where:

 is a finite sequence of real ()

and discrete () present state variables. The se-

quence of next state variables is obtained by

decorating with all variables in .

 is a finite sequence of input vari-

ables.

 is a finite sequence of auxiliary

variables.

 is a guarded predicate over

 defining the transition relation of

the system.

A Discrete Time Linear Hybrid System

(DTLHS) is a DTHS whose transition relation is

linear.

The semantics of a DTHS is given in terms

of the labeled transition system

Spec ia l i s s ue : IT I DS+ MAAO '2013

40

 where: is a

function s.t. .

We say that DTHS overapproximates

DTHS when .

Example 1. Let us consider a simple inverted

pendulum. The system is modeled by taking the

angle and the angular velocity as state varia-

bles. The input of the system is the torquing force

 , that can influence the velocity in both directions.

Moreover, the behaviour of the system depends on

the pendulum mass , the length of the pendulum
and the gravitational acceleration . Given such

parameters, the motion of the system is described

by the differential equation:

 .

In order to obtain a state space representation,

we consider the following normalized system,

where is the angle and is the angular speed

 .

The DTHS model for the pendulum is the

tuple , where is the set of

continuous state variables, is the set of

input variables, and . Differently from [5],

we consider the problem of finding a discrete con-

troller, whose decisions may be “apply the force

clockwise” (), “apply the force counter-

clockwise” (), or “do nothing” (). The

intensity of the force will be given as a constant .

Finally, the discrete time transition relation is

obtained from the equations in Eq. 1. as the Euler

approximation with sampling time , i.e. the predi-

cate

 .

3.1. Quantized Control Problem for

DTHSs

A DTHS control problem is defined

as the LTS control problem . To

manage real variables, in classical control theory

the concept of quantization is introduced (Quanti-

zation is the process of approximating a continuous

interval by a set of integer values. A quantization

function for a real interval is a non-

decreasing function s. t. is a

bounded integer interval. We extend quantizations

to integer intervals, by stipulating that in such a

case the quantization function is the identity func-

tion. Given a DTHS , a quantiza-

tion is a set of quantization functions
 . If is a list of varia-

bles and , we write for

the tuple

 .

Definition 2. Let be a DTHS,

 be a quantization for and be a

DTHS control problem. A Quantized Feedback

Control (QFC) solution to is a solution

to s.t. there exists s. t.

 .

4. LINEAR OVERAPPROXIMATION OF

DTHSS

The tool QKS [1], given a DTLHS control

problem and a quantization schema

as input, yields as output control software imple-

menting an optimal quantized controller for ,

whenever a sufficient condition holds. In this sec-

tion we show how a DTHS can be

overapproximated by a DTLHS , in such a way

that . Corollary 1 ensures that

controllers for are guaranteed to be controllers

for .

4.1. DTHS Linearization

Let , with , be a con-

straint in that contains a nonlinear function as a

subterm. Then has the shape
 , where is a set of real variables

 , and is a set of discrete varia-

bles. For each , we define the function

 obtained from , by instantiating discrete

variables with , i.e . Then

is equivalent to the predicate

 . In order to make the overapproximation

tighter, we partition the domain of each func-

tion into hyperintervals , where

 . In the following will de-

note the conjunctive predicate

 .

Let
 and

 be over- and under-

linear approximations of over the

hyperinterval , i.e. such that implies

 (in [4] we show the

systematic approach for finding such approxima-

tions for functions using Taylor theorem). Tak-

ing fresh continuous variables

 and fresh boolean vari-

ables
, we define the guarded

predicate :

41 V. Al imguzhin , F . Mari , et a l . ● MODEL BASED DESIGN OF CONTROL SOFTWARE …

.

This transformation eliminates a nonlinear

subexpression of a constraint and yields a

constraint such that
 . Given a DTHS , without

loss of generality, we may suppose that the transi-

tion relation is a conjunction

 of constraints. By applying

the above transformation to each nonlinear

subexpression occurring in , we obtain a conjunc-

tion of linear constraints ,

such that . Hence starting from a DTHS ,

we find DTLHS , whose dynam-

ics overapproximates the dynamics of .

Theorem 1. Let be a DTHS

and be its linearization. Then we have

 .

Theorem 2. Let and
 be two LTSs and let be a solution to the

LTS Control Problem . If and for

all then is also

solution to the LTS Control Problem .

Corollary 1. Let be a DTHS

and be its linearization. Let be a solution to

the DTLHS Control Problem . Then is

a solution to the DTHS Control Problem .

5. EXPERIMENTAL RESULTS

We present experimental results obtained by

using QKS [1] on the inverted pendulum example

described in Ex. 1. In all our experiments as in we

set and

. We set the force intensity

parameter .

We use uniform quantization functions dividing

the domain of each state variable

 (we write for a rational approxima-

tion of it) and
 into equal inter-

vals, where is the number of bits used by AD

conversion. Since we have two quantized variables,

each one with bits, the number of quantized states

is exactly . In the following, we sometimes

make explicit the dependence on by writing .

The typical goal for the inverted pendulum is to

turn the pendulum steady to the upright position,

starting from any possible initial position, within a

given speed interval. In our experiments, the goal

region is defined by the predicate
 , where ,
and the initial region is defined by the predicate

).

Fig. 1. Trajectories: and

All experiments have been carried out on an In-

tel(R) Xeon(R) CPU @ 2.27GHz, with 23GiB of

RAM, Debian GNU/Linux 6.0.3 (squeeze).

We run QKS for different values of the remain-

ing parameters, i.e. (goal tolerance) and (num-

ber of bits of AD). In the Tab. 1. each row corre-

sponds to a QKS run, columns , , show the

corresponding inverted pendulum parameters, col-

umn shows the size of the obtained control

software, columns CPU and MEM show the com-

putation time (in seconds) and RAM usage (in KiB)

needed by QKS to synthesize controller. Fig.1.

shows the simulations of and . As

we can see drives the system to the goal with

a smarter trajectory with one swing only.

Table 1. Experimental results for inverted pendulum

 CPU MEM

8 0.1 0.1 2.73e+04 2.56e+03 7.72e+04

9 0.1 0.1 5.94e+04 1.13e+04 1.10e+05

10 0.1 0.1 1.27e+05 5.39e+04 1.97e+05

11 0.01 0.05 4.12e+05 1.47e+05 2.94e+05

6. CONCLUSIONS

We presented an automatic methodology to

synthesize control software for nonlinear DTHS.

The control software is correct-by-construction

with respect to both System Level Formal Specifi-

cations of the closed loop system and Implementa-

tion Specifications, namely the quantization sche-

ma. The present work can be extended in several

directions. First of all, it would be interesting to

consider control synthesis of controllers that are

optimal with respect to a cost function given as in-

put of the control problem, rather than simply time-

optimal. Second, it would be interesting to extend

our approach to CTL specifications, rather than just

liveness and safety properties. Finally, a natural

possible future research direction is to investigate

-1

 0

 1

 2

 3

 4

 5

 6

 7

 0 2 4 6 8 10 12 14

time in seconds

angle [x1] 10 bits
angle [x1] 9 bits

Spec ia l i s s ue : IT I DS+ MAAO '2013

42

DTHS control software synthesis when the state is

not fully observable.

ACKNOWLEDGMENTS

This research was supported by Erasmus Mundus MULTIC
scholarship from the European Commission (EMA 2 MULTIC
10-837).

REFERENCES

1. Federico Mari, Igor Melatti, Ivano Salvo, and Enrico Tronci,
“Synthesis of quantized feedback control software for dis-
crete time linear hybrid systems,” CAV, LNCS 6174,
pp. 180-195, 2010.

2. Federico Mari, Igor Melatti, Ivano Salvo, and Enrico Tronci,
“From boolean relations to control software,” ICSEA,
pp. 528–533, 2011.

3. F. Mari, I. Melatti, I. Salvo, and E. Tronci, “Undecidability of
quantized state feedback control for discrete time linear
hybrid systems,” ICTAC, LNCS 7521, pp. 243–258, 2012.

4. V. Alimguzhin, F. Mari, I. Melatti, I. Salvo, and E. Tronci,
“Automatic control software synthesis for quantized dis-
crete time hybrid systems,” CDC, IEEE, pp. 6120-6125,
2012.

5. V. Alimguzhin, F. Mari, I. Melatti, I. Salvo, and E. Tronci,
“On model based synthesis of embedded control soft-
ware,” EMSOFT, ACM, pp. 227-236, 2012.

ABOUT AUTHORS

ALIMGUZHIN, Vadim, Postgrad. (PhD) Student, Computer
Science Department, Sapienza University of Rome. Master
of Software and Administration of Information Systems
(USATU, 2009).

TRONCI, Enrico, Associate Prof., Computer Science Depart-
ment, Sapienza University of Rome. Master of Electrical
Engineering (Sapienza University of Rome, 1987), PhD in
Computer Science (Carnegie Mellon University, 1991).

SALVO, Ivano, Assistant Prof., Computer Science Department,
Sapienza University of Rome. Master of Computer Science
(University of Udine, 1995), PhD in Computer Science
(Sapienza University of Rome, 2000).

MELATTI, Igor, Assistant Prof., Computer Science Department,
Sapienza University of Rome. Master of Computer Science
(University of L’Aquila, 2001), PhD in Computer Science
(University of L’Aquila, 2005).

MARI, Federico, Post Doc, Computer Science Department,
Sapienza University of Rome. Master of Computer Science
(Sapienza University of Rome, 2006), PhD in Computer
Science (Sapienza University of Rome, 2009).

