Вестник УГАМУ .

УДК 621.91:536

Математическое моделирование процесса генерирования сигнала естественной термопары под действием температурно-силового фактора в зоне резания

В. В. Постнов¹, Е. А. Шарапов², С. Ю. Фомин³

¹ postnovmss@mail.ru, ² ufa_usinsk@mail.ru, ³ SeryogaFom@mail.ru

^{1,3} ФГБОУ ВПО «Уфимский государственный авиационный технический университет» (УГАТУ) ² ЗАО «Межотраслевая нефтегазохимическая компания» (МНГК)

Поступило в редакцию 22.07.2013

Аннотация. Предложена модель, устанавливающая количественное соотношение между термоЭДС естественной термопары резец-деталь, величиной температуры и удельных нагрузок в зоне резания. Приведены расчетные данные распределения температуры и термоЭДСвдоль передней и задней поверхностей инструмента. Предложена модель термо-электро-контактного взаимодействия материалов детали и инструмента, позволяющая прогнозировать оптимальную температуру контакта, обеспечить наилучшие качества поверхности обработанной детали.

Ключевые слова: термоЭДС; резец-деталь; естественная термопара.

Установление функциональных взаимосвязей между интенсивностью износа резца и параметрами процесса резания невозможно без определения температуры в зоне резания, являющейся основным фактором, определяющим износ инструмента и характеристики обработанного поверхностного слоя.

Исследование теплофизических процессов, протекающих в зоне резания, тесно связано с проведением экспериментов по определению температур на контактных площадках инструмента, изделия или стружки. Такие эксперименты необходимы для непосредственного решения опытным путем теплофизических задач и проверки правильности результатов теоретических решений, предназначенных для определения температуры и законов ее распределения в зоне контакта, для возможности корректировки параметров процесса резания в режиме реального времени, при реализации систем управления температурным контуром обработки.

В соответствии с исследованиями контактных процессов при резании металлов [1, 2], удельные нагрузки так же, как и температура, распределены на контактных поверхностях инструмента и в зоне стружкообразования неравномерно (рис.1).

Основным методом получения сведений о средней температуре резания с достаточно высокой точностью, простотой и надежностью, является метод естественной термопары [3], использование которого требует соответствующей градуировки пары «резец–деталь».

Рис. 1. Распределение контактных напряжений на поверхности инструмента

Исследования влияния градиента температуры в более твердом материале пары трения на суммарную термоЭДС термопары показали [4, 5], что градуировочные испытания, проведенные без учета влияния контактных давлений на удельную термоЭДС менее твердого материала пары трения, дает завышенные расчетные значения температуры, на основании чего сделан вывод о возможности деформационного возбуждения поверхностных слоев контактирующих материалов, сопровождающегося дополнительной генерацией термотока [6].

В связи с этим предложен метод градуирования, использующий так называемую дифференциальную схему [7]. В качестве горячего спая термопары использована модель локального контакта единичной микронеровности инструмента (рис. 2), выполненной в виде двустороннего сферического индентора I под действием нормальной нагрузки N, внедренного в плоско-параллельные образцы 2 и 3 из более мягкого материала и вращающегося в образованных при этом лунках со скоростью (0). Один из образцов (3) нагревался электроконтактным способом с помощью регулировочного трансформатора (4) типа PHO-250-10. Контроль температуры образца осуществлялся стандартной хромельалюмелевой термопарой (5) (рис. 2).

Рис. 2. Принципиальная схема установки для исследования термоэлектрических характеристик естественных термопар

Изменение удельного нормального давления на контакте проводили за счет ступенчатого снижения *N* при постоянной площади контакта.

Характерные градуировочные зависимости для одной из контактирующих пар приведены на рис. 3. Установлено, что для всех исследованных пар трения зависимости Е(θ) являются немонотонными, с точками инверсии при температурах, практически совпадающих для предельной нормальной нагрузки с критическими температурами удельных термоЭДС. Подобное поведение естественной термопары может быть объяснено [7] изменением теплосодержания и явлением изотермического теплового эффекта при фазовых переходах I и II ряда, идущего с выделением (поглощением) тепловой энергии при охлаждении (нагреве), а также термическим гистерезисом, начинающимся от наружной поверхности зоны контакта при его охлаждении.

Сопоставление результатов градуировочных и стойкостных экспериментов показывает (рис. 3), что минимум интенсивности износа наблюдается при температуре θ_{ont} , практически соответствующей θ_{kp} характерного перелома градуировочных зависимостей естественной термопары.

Рис. 3. Градуировочные зависимости для пары XH35BTЮ-ВД–ВК8 при различных нормальных напряжениях p_r (режим охлаждения); $p_r = 350$ Мпа (о); $p_r = 270$ МПа (Δ); $p_r = 210$ Мпа (\Box); $p_r = 150$ МПа (\diamond)

В табл. 1 приведены значения оптимальных по интенсивности износа температур резания и критических температур градуировочных зависимостей естественных термопар.

Таблица 1 Сопоставление оптимальных по интенсивности износа температур контакта с критическими температурами градуировочных зависимостей

Инструмента материал	Обрабатываемый материал					
	ХН35ВТЮ ВД		13Х12Н2ВМФШ		BT3-1	
	θ _{опт} , К	θ _{кр} , Κ	θ _{опт} , К	θ _{кр} , Κ	θ _{опт} , К	θ _{кр} , Κ
Т15К6	1070	1050	1040	1050	1020	1020
ВК8	950	950	1070	1070	1020	1020
BK10OM	970	970	1080	1080	1020	1020
BK10XOM	1000	990	1020	1020	1020	1020

Анализ показывает, что они практически совпадают, что позволяет использовать результаты исследований термоэлектрических процессов для определения оптимальных уставок E_0 термоЭДС в системах управления мехатронных станочных модулей.

Установление факта совпадения оптимальных и критических температур контакта позволяет сделать вывод о том, что условие минимизации интенсивности износа может быть связано как со структурными или магнитными превращениями в зоне контакта трибосопряжения, так и с изменением микромеханизма термопластической деформации приконтактной зоны обрабатываемого материала.

В результате проведения экспериментальных исследований на установке, моделирующей локальный термоэлектрический фрикционный контакт микронеровности инструментального материала с полубесконечной поверхностью материала заготовки, описанной в работе [8] для пары XH35BTЮ-BД–BK8, получены градуировочные зависимости $E(\Theta)$ при различных значениях нормальных удельных нагрузок.

Рис. 4. Влияние температуры на термоЭДС контакта и интенсивность износа резца ВК8 при обработке сплава XH35BTЮ-ВД

Используя представление о термоэлектрических явлениях как термически активированных процессах [9], полученные зависимости $E = f(\Theta, P_r)$ аппроксимированы единым выражением типа:

$$E = E \cdot \exp(-\frac{U - \beta \cdot P}{R \cdot \Theta}), \qquad (1)$$

где E_0 — предэкспоненциальный множитель, постоянный для определенного диапазона температур контакта; β_E — пьезокоэффициент, учитывающий влияние нормальной удельной нагрузки на электропроводимость контакта; U_0 постоянная, имеющая смысл энергии активации термоэлектрического процеса; R — постоянная Больцмана; P_r — нормальное давление.

В выражении (1) температура Θ и нормальное давление P_r имеют локальный характер и не отображают реального распределения значений по всей поверхности инструмента.

Неравномерность распределения как удельных нагрузок, так и температур в пределах зон контакта инструмента со стружкой и деталью, может привезти к изменению суммарной мощности термоэлектрического сигнала и отклонению от однозначности температурной зависимости термоЭДС естественной термопары деталь-резец.

Для возможности коррекции термоэлектрического сигнала и повышения точности измерения температуры резания, в целях реализации температурного контура управления мехатроным оборудованием, необходимо разработать модель термо-электро-контактного взаимодействия материалов детали и инструмента и предложить программную и аппаратную части реализации модели для использования на станках с ЧПУ.

Известно, что температура Θ на передней поверхности инструмента распределена неравномерно: на участке пластических деформаций имеет возрастающий характер и доходит до максимума в точке $x = l_0$, а в зоне упругих деформаций температура падает [10]. Нормальное давление P_r , в точке x = 0 имеет максимум значения и по мере удаления от режущей кромки снижается, принимая нулевое значение в конце зоны контакта «инструмент–деталь».

Температура передней поверхности Θ определяется суммой температуры Θ_A пластических деформаций в условной плоскости сдвига и переменной вдоль передней поверхности температуры трения и вторичных пластических деформаций Θ_{Π} [2]:

$$\Theta = \Theta + \Theta , \qquad (2)$$

где
$$\Theta_{l} = \Theta_{l} \sqrt{x/l}$$
 для $0 \le x \le l_{0};$ (3)

$$\Theta = \Theta \left(l / x \right)$$
 для $l \ge x \succ l$; (4)

x — переменная координаты вдоль передней поверхности инструмента; Θ —максимальная температура трения.

Распределение нормального давления представлено в виде [10]:

$$P = P \cdot (x/l) , \qquad (5)$$

где *n* – коэффициент характеризующий степень изменения *P_r*; *P* – максимальное нормальное давление.

На основании вышеизложенного введем в уравнение (1) зависимость температуры Θ и нормального давления P_r от координаты x при $0 \le x \le l$

$$E = E \cdot \exp\left(-\frac{U_{l} - \beta \cdot P \cdot (x/l)}{R \cdot (\Theta + \Theta \sqrt{x/l})}\right), \quad (6)$$

при $l \ge x \succ l$

$$E = E \cdot \exp\left(-\frac{U - \beta \cdot P \cdot (x/l)}{R \cdot (\Theta + \Theta [l/x])}\right).$$
(7)

Выражения (6) и (7) позволяют определять значение термоЭДС в каждой конкретной точке x в диапазоне от 0 до l.

Проинтегрировав и сложив выражения (6) и (7), получим формулу для расчета суммарной термоЭДС.

$$E = Edx + Edx.$$
 (8)

Данное выражение позволяет теоретически определять значения термоЭДС с учетом распределения нормального давления P_r и температуры Θ по передней поверхности, вводить поправку в расчет температуры на основании имеющихся данных по термоЭДС.

Теоретические исследования теплофизики процессов обработки с переменными условиями резания, проведенные А. Н. Резниковым [11, 12], позволили получить выражения для расчета температуры как при дискретном, так и при непрерывном изменении по линейному скорости, закону ширины и толщины срезаемого слоя. При этом используется зависимость для расчета средней температуры резания, полученная при условии малого теплообмена по площади контакта инструмента с заготовкой:

$$E = E \cdot \exp\left(-\frac{U - \beta \cdot P \cdot (x/l)}{R \cdot (\Theta + \Theta \sqrt{x/l})}\right) dx +$$

+
$$E \cdot \exp\left(-\frac{U - \beta \cdot P \cdot (x/l)}{R \cdot (\Theta + \Theta [l/x])}\right) dx$$
(9)

где l_1, l_2 – длины контактных площадок на передней и задней поверхностях резца соответственно; λ, λ_P – коэффициенты теплопроводности материалов детали и инструмента соответственно; ω – коэффициент температуропроводности обрабатываемого материала; k – коэффициент утолщения (усадки) стружки; $(1+C)\theta_g$ – температура деформации, рассчитанная с учетом подогрева слоев материала перед зоной стружкообразования;

 $q_{1T} = 5.85 \frac{v(P_{z_0} \sin \gamma + P_{N_0} \cos \gamma)}{b \cdot l_1 \cdot k} - \text{интенсивность}$

тепловыделения от трения стружки о переднюю поверхность инструмента; Δ – толщина заторможенного слоя на передней поверхности инструмента; M_1 – безразмерная функция, отображающая условия теплоотвода в резец со стороны его передней поверхности.

На рис. 5 представлены расчетные данные распределения температуры и термоЭДС по передней и задней поверхности инструмента, выполненные по зависимостям (2), (6), (7).

Для реализации аппаратной части модели был разработан стенд на базе станка с ЧПУ модели 16К20Т3, включающий в себя: персональный компьютер с ПО Labview; плату вводавывода; сопрягающие устройства; датчики термоЭДС, силы и мощности резания.

Рис. 5. Распределение температуры и термоЭДС вдоль передней и задней поверхностей инструмента (расчетные данные при V = 40 м/мин) для пары XH35BTЮ-ВД–ВК8

Замер сигнала термоЭДС производился методом естественной термопары. Для реализации алгоритмов расчета и обработки экспериментальных данных применено программное обеспечение Labview, в котором реализован алгоритм, составленный по вышеописанной модели. Съем информации Е_{эксп} производился с применением многофункциональной платы сбора данных с высоким разрешением PCI-1741S фирмы ADVANTECH. На один из входов платы подключается сигнал с термопары, на другой – с датчика силы резания. Посредством программного обеспечения производилась обработка измеряемых параметров, последующая запись, расчет термоЭДС (Ерасч) и расчет корректирующего коэффициента k как отношения термоЭДС естественной термопары, измеренной экспериментально, к значению термоЭДС, определенному на основании уравнения (9), с учетом неравномерного распределения температуры и удельных нагрузок, в зоне контакта инструментдеталь.

Результаты расчетов и экспериментальных исследований представлены на рис. 6. Полученные данные показывают, что на экспериментальной зависимости термоЭДС существуют зоны инверсии при значении ЭДС = 24 мВ, согласно данным [10] соответствующие оптимальной температуре резания. Расчетная средняя температура контакта с увеличением скорости резания монотонно возрастает. Поведение зависимостей как расчетных, так и экспериментальных оказалось практически идентичным в диапазоне рациональных скоростей резания, выше оптимальной по критерию минимальной интенсивности износа. Корректирующий коэффициент проходит через максимум в диапазоне оптимальных скоростей резания. В работе [10] показан аналогичный характер относительной длины зоны заторможения материала стружки

на передней поверхности инструмента. Это приводит к увеличению вклада силовой составляющей термоЭДС по сравнению с температурной, при этом максимум температуры на передней поверхности отодвигается от режущей кромки, что приводит к уменьшению нагруженности кромочной области инструмента и снижению интенсивности износа, что подтверждается данными рис. 6.

Рис. 6. Экспериментальные и расчетные данные зависимости термоЭДС, температуры резания, корректирующего коэффициента и интенсивности износа при различных скоростях резания (ХН73МБТЮ-ВК8, *S* = 0,11 мм/об, *t* = 0,5 мм)

выводы

Использование схемы дифференциальной естественной термопары для градуирования локального контакта материалов инструмента и детали позволило установить, что диапазону оптимальных температур резания соответствует явление изотермического теплового эффекта при фазовых превращениях I и II рода в обрабатываемом материале, сопровождающегося поглощением в процессе нагрева части тепловой энергии, подводимой к зоне контакта.

Установлено, что этим же температурам соответствуют оптимальные по критерию минимальной интенсивности износа инструмента температуры резания, что обусловлено прежде всего явлениями изотермического теплового эффекта при фазовых превращениях I и II рода в обрабатываемом материале, идущих с поглощением механической энергии, подводимой к зоне контакта, снижением доли энергии, идущей на накопление внутренней энергии, повреждаемостью и износом инструмента.

Предложенная модель термо-электро-контактного взаимодействия материалов детали и инструмента позволяет прогнозировать зону оптимальной температуры контакта, обеспечить наилучшие качества поверхности обработанной детали.

СПИСОК ЛИТЕРАТУРЫ

1. Полетика М. Ф. Контактные нагрузки на режущих поверхностях инструмента. М.: Машиностроение, 1969. 148 с

2. Силин С. С. Метод подобия при резании материалов. М.: Машиностроение, 1978. 154 с.

3. Зориктуев В. Ц., Хузин И. С. Электропроводимость контакта «инструмент-деталь» – физический и информационный параметр в станочных системах. М: Машиностроение, 1998. 176 с.

4. Зориктуев В. Ц., Исаев Ш. Г. Взаимосвязь электрической проводимости контакта «резец-деталь» с параметрами режима резания // Оптимизация процессов резания жаро- и особопрочных материалов: межвуз. тем. сб. Уфа: УАИ, 1983. С. 144–149.

5. Постнов В. В., Карюгина Л. В., Бахтияров Б. М. Термоэлектрические характеристики локального фрикционного контакта // Оптимизация процессов резания жарои особопрочных материалов: межвуз. темат. науч. сб. Уфа: УАИ, 1989. С. 149-152.

6. Зориктуев В. Ц., Постнов В. В., Мигранов М. Ш. Исследование электропроводимости контакта инструмент-деталь (ЭП КИД) при нестационарном точении // Проблемы машиноведения конструкционных материалов и технологий: сб. науч. тр. Уфа: Гилем, 1997. С. 18–21.

7. Лившиц Б. Г., Крапошин В. С., Линецкий Я. Л. Физические свойства металлов и сплавов. 2-е изд., перераб. и доп. М.: Металлургия, 1980. 320 с.

8. Постнов В. В., Шолом В. Ю., Шустер Л. Ш. Методы и результаты оценки контактного взаимодействия применительно к процессам металлообработки. М.: Машиностроение, 2004. 103 с.

9. Постнов В. В., Карюгина Л. В., Бахтияров Б. М. Термоэлектрические характеристики локального фрикционного контакта // Оптимизация процессов резания жаро и особопрочных материалов: науч. сб. Уфа: УАИ, 1989.

10. Постнов В. В., Шарипов Б. У., Шустер Л. Ш. Процессы на контактных поверхностях, износ режущего инструмента и свойства обработанной поверхности. Свердловск: Изд-во Уральск. ун-та, 1988. 224 с.

11. **Резников А. Н.** Теплофизика процессов механической обработки материалов. М.: Машиностроение, 1981. 279 с.

12. Резников А. Н., Козин И. Я. Устройство для тарирования естественной термопары и сортировки пластинок твердого сплава // Станки и инструмент. 1968. № 4. С. 34– 35.

ОБ АВТОРАХ

ПОСТНОВ Владимир Валентинович, зав. каф. мехатронных станочн. систем. Дипл. инж.-мех. (УАИ, 1972). Д-р техн. наук по технол. и оборуд. мех. и физ.-техн. обработки (УГАТУ, 2005). Иссл. в обл. физ. оптимизации нестац. процессов резания жаропрочн. сталей и сплавов.

ШАРАПОВ Евгений Анатольевич, зам. директора по управлению бизнес-процессами, ассист. каф. мехатронных станочн. систем. Иссл. в обл. металлообработки.

ФОМИН Сергей Юрьевич, студ. 5-го курса.

METADATA

Title: Mathematical modeling of the signal generating natural thermocouples under the influence of temperature and power factor in the cutting zone.

Authors: V. V. Postnov, E. A. Sharapov, S. Yu. Fomin.

Affiliation:

- ^{1,3} Ufa State Aviation Technical University (UGATU), Russia.
 ² JSC "MNGK".
- Email: postnovmss@mail.ru; ufa_usinsk@mail.ru; SeryogaFom@hotmail.com.

Language: Russian.

- Source: Vestnik UGATU (scientific journal of Ufa State Aviation Technical University), vol. 17, no. 8 (61), pp. 93-98, 2013. ISSN 2225-2789 (Online), ISSN 1992-6502 (Print).
- **Abstract:** The model establishes the quantitative relationship between the thermoelectric power of natural thermocouple-cutter detail, temperature value and unit loads in the cutting zone. The calculated data of temperature and thermal electromotive force along the front and back surfaces of the instrument. A model of thermo-electrocontact interaction of materials parts and tools to predict the optimum temperature of contact, provide the best surface quality of machined part.
- Key words: modeling; natural thermocouple cutting zone; thermo-emf.

References (English transliteration):

- 1. M. F. Poletika, *Contact load on the cutting tool surfaces*. Moscow: Mashinostroyenie, 1969.
- 2. S. S. Silin, *Similarity method when cutting materials*. Moscow: Mashinostroyenie, 1978.
- V. Ts. Zoriktuev and I. S. Huzin, Conductivity contact "toolitem" – the physical and information parameter in machine systems. Moscow: Mashinostroyenie, 1998.
- 4. V. Ts. Zoriktuev and Sh. G. Isaev, "Relationship electrical contact conductance "cutter–part" with the parameters of the cutting conditions," in *Process optimization cutting heat-and extra-strong materials*. Ufa: AIM, 1983, pp. 144-149.
- V. V. Postnov, L. V. Karyugina, and B. M. Bakhtiyarov, "Thermoelectric performance of the local frictional contact," in *Process optimization cutting heat-and extrastrong materials*. Ufa: AIM, 1989, pp. 149-152.
- V. Ts. Zoriktuev, V. V. Postnov, and M. S. "Migranov Investigation of the electrical conductivity of the contact tool item (EP CDS) under unsteady turning," in *Problems of Mechanical Engineering, construction materials and technologies.* Ufa: Guillem, 1997, pp. 18-21.
- B. G. Livshits, V. S. Kraposhin, and J. L. Linetskiy, *Physical properties of metals and alloys*, 2nd ed. Moscow: Metallurgy, 1980.
- 8. V. V. Postnov, V. Y. Sholom, and L. S. Shuster, *Methods and results of the evaluation in relation to the contact interaction processes of metal.* Moscow: Mashinostroenie, 2004.
- V. V. Postnov, L. V. Karyugina, and B. M. Bakhtiyarov, "Thermoelectric performance of the local frictional contact," in Optimization of cutting processes zharo and extra strong materials. Ufa: UAI, 1989.
- 10. V. V. Postnov, B. U. Sharipov, and L. S. Shuster, *Processes* on the contact surfaces, tool wear and surface finish prop-

erties. Sverdlovsk: Publishing House of the Urals. University Press, 1988.

- 11. A. N. Reznikov, *Thermophysics machining processes materialov*. Moscow: Mashinostroenie, 1981.
- A. N. Reznikov and I. Y. Kozin, "Device for natural thermocouple calibration and sorting records carbide," *Machines and tools*, no. 4, pp. 34-35, 1968.

About authors:

POSTNOV, Vladimir Valentinovich, Head Dept. mechatronic machine-tool systems. Dipl. Mechanical Engineer (AIM, 1972). Dr. Tech. Science (USATU, 2005).

SHARAPOV, Evgeniy Anatolyevich, Deputy. Director of Business Process Management, assistant lecturer.

FOMIN, Sergey Yuryevich, student of Ufa State Aviation Technical University.