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Abstract. In this paper, adaptive and robust non Gaussian sensor fusion INS/GNSS is proposed to solve specif-
ic problem of non linear time variant state space estimation with measurement outliers, different algorithms 
are proposed to solve this specific problem generally occurs in intentional and non intentional interferences 
caused by other radio navigation sources, or by the GNSS receivers deterioration. Non linear approximation 
techniques such as Extended Kalman filter EKF and modern Cubature based Kalman Filters are computed to 
estimate the navigation states for UAV flight control. Several comparisons are conduced and analyzed in or-
der to compare the accuracy and the convergence of different approaches usually applied in navigation data 
fusion purposes. The modern non linear filter algorithm called Cubature Kalman Filter CKF which provides 
more accurate estimation with more stability in Tracking data fusion application is compared with conven-
tional non linear filters. In this work, CKF is compared with EKF in ideal conditions and during GNSS impulsive 
interferences modeled as non Gaussian noises “Sum of Gaussian” supposed to occur during specific interval 
of time, during the same interval, we assume additional denied environment which consists in the variation 
of the Gaussian sum noise covariance, then, innovation based adaptive fading approach is selected and used 
to modify the covariance calculation of the parallel non linear filters performed in this work. Interesting re-
sults are observed, discussed with real perspectives in navigation data fusion for real time applications under 
multiple denied environment parameters.  
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1. INTRODUCTION  

Data fusion in denied environment for non line-

ar system is one the most important problem in 

Multisensory fusion and integrated navigation sys-

tems today. In this paper, sensors used are gyro-

scopes and accelerometers components of inertial 

as the main system with external aid provided by 

GPS and GLONASS receivers known recently as 

Global Navigation Satellite System “GNSS” solu-

tions. Multiple basic and complex algorithms for 

data fusion based on IMU/GNSS have been widely 

discussed in the specialized literature [1–4]. In this 

paper, it is assumed that accelerometers and gyro-

scopes are in the category “Low cost” which gives 

a special interest for real time applications where 

most sensors are MEMS Micro Electrical Mechani-

cal Systems based technology. The most inconven-

ient of these inertial sensors are the biases and drifts 

growing during time, which needs to be bounded by 

another technology of sensors such as used in our 

work, called GNSS. GNSS gives today’s satellite 

trajectory and high-precision navigation. Inertial 

sensors combined with GNSS receiver are a good 

alternative and reliable integrated system for navi-

gation purposes. However, “GNSS bands’’ suffer 

interference from the services in the frequency 

band, in particular, high power pulsed signals  from 

Distance Measuring Equipment (DME) and Tacti-

cal Air Navigation (TACAN) systems embedded on 

most aircrafts. The pulsed interference degrades 

received Signal to Interference and Noise Ratio 

(SINR), lowers the acquisition sensitivity and even 

causes the tracking loops to diverge. To ensure ro-

bust navigation accuracy and integrity, interference 

mitigation is necessary. As a first step, adaptive 

integrated navigation systems INS/GNSS is devel-

oped for different aerospace applications. However 
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in our work, we focus on GNSS outliers caused by 

multipath scenario, with bad satellite visibility due 

to flights in canyon environment, or due to non in-

tentional interferences such caused by multiple 

GSM signals, radio, Bluetooth, Jammer, multiple 

satellite communication technologies such as Iridi-

um,...etc [5–7].  Nevertheless, the classic form of 

INS/GNSS data fusion is not adaptive against 

measurement’s outliers ... etc. In this paper, a tenta-

tive to create robust adaptive non linear filters for 

navigation sensors is performed, a solution is pro-

posed based on Gaussian sum adaptive extended 

Kalman filter (GSAEKF) and Gaussian sum adap-

tive Cubature Kalman Filter GSACKF, robust 

adaptive version of CKF algorithm [7].  

2. INERTIAL SENSORS 

Inertial Measurement Unit “IMU” is the basis 

of inertial navigation system. It is based on 03 ac-

celerometers and 03 gyroscopes in addition to 03 

magnetometers in most modern strapdown IMU’s. 

The technology used during the last 50 years has 

been developed into: Gimbaled INS and Strapdown 

INS. In our work, the model used is related to 

strapdown technology with fixed inertial sensors 

MEMS based, in parallel with body axes. Most of 

today’s inertial sensors are micro electromechanical 

systems (MEMS). This technology was first used 

for commercial purposes in the 1990's, and enabled 

new applications through high miniaturization and 

cost reduction. Inertial sensors began to be used in 

completely new domains, such as robotics, aero-

space, guidance navigation and control and Pedes-

trian navigation. However, this miniaturization and 

cost reduction influences the performance of the 

accelerometers and gyroscopes, which explains 

why some inertial sensors based on previous tech-

nologies are still used for high-performance pur-

poses. Gimbaled INS are mechanical with special 

Horizontal stabilization control with very expensive 

cost, they are usually used onboard satellites, 

spacecrafts, submarine … etc. 

IMUs based on MEMS sensors are strap-down 

systems, which mean the sensor's orientation de-

pends of the orientation of the object it is on. Theo-

retically, all types of previously shown MEMS in-

ertial sensors are mounted in an IMU. As an exam-

ple, a in Revo board, there are accelerometers, gy-

roscopes, magnetometers and baro-altimeter based 

on MPU6000 sensor fusion compound [8]. 

2.1 Mechanization of inertial 

measurement unit 

Inertial navigation system is divided in two 

principal parts: IMU and Digital Signal Processing 

of sensors data fusion. The following section de-

scribes how inertial sensors outputs are integrated 

and fused especially how navigation is processed 

 

 

Fig. 1. Revo board ‘Autopilot’ with integrated 

Strapdown Inertial Measurement Unit with 

MCU STM/MEMS gyroscopes, accelerometers 

and magnetometers 

Strapdown INS mechanization is described 

such as in Fig. 1 and Fig. 2 with a general diagram 

of SINS as described , based on inertial sensors 

output; accelerometers and gyroscopes. Inertial 

navigation system can’t ensure long term accuracy 

of its output, and depends on external aid such as 

GNSS and other sensors in most of aerospace ap-

plications [9, 10].  
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2.2 IMU Sensors output integration 

Inertial measurement units (IMUs) typically 

contain three orthogonal rate-gyroscopes and three 

orthogonal accelerometers, measuring angular ve-

locity and linear acceleration respectively. Ideally, 

the output of the rate-gyroscopes is written as  

        Tbzbybxb tttt  .    (1) 

In practice, however, the outputs contain errors 

and are written as the formula given below:  

     ,~ ttt bbb   

        Tbzbybxb tttt  .    (2) 

Integrating these yields the updated attitude in-

formation for the system provides the following 

equation:  

     ,ttCtC
dt

d n

b
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b                   (3) 
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Similarly, accelerometers outputs can be writ-

ten as 

        Tbzbybxb tatatata  , 

      tatata bbb ~ .                   (6) 

Two integrations subsequently yield velocity 

and position updates as follows 

Velocity integration:  

         nknknkn gatVV   ,1,,
~ .            (7) 

Position integration:     

          kngknkn Vt ,1,, PosPos   ,          (8) 

where g is the estimated gravity vector and ∆t is the 

data period. Collectively, equations (1) to (10) de-

scribe the system model.   

3. GNSS GLOBAL NAVIGATION 

SATELLITE SYSTEM (GPS, GLONASS, 

GALILEO, COMPASS) 

GNSS signal processing is much explored 

based on different algorithms tested more and more 

in real time conditions and in simulations through 

the specialized literature. We focus on the effect of 

more satellite visibility in order improve geometry 

dilution of precision due to the high number of sat-

ellites GPS+GLONASS (36–40). GLONASS satel-

lites also broadcast signals in the L1 and L2 sub-

bands of the radio frequency spectrum as described 

in the literature.  It is observed in some situation 

several interferences from different sources for 

GPS and GLONASS during static and dynamic po-

sitioning. GNSS outages or outliers cause accuracy 

degradation, and sometimes undelivered GNSS re-

ceiver positioning [10].  

 

 

Fig. 3. Power Spectral Densities of GNSS 

Signals 

However unlike GPS, GLONASS (Russian) 

uses frequency division multiple access (FDMA) in 

both L1and L2 frequency sub-bands. This means 

that each satellite modulates the same ranging code 

on carrier signals with slightly different frequencies 

and is identified by a slot number rather than a 

Pseudo random Noise (PRN) number. GNSS based 

on GPS and GLONASS (European system Galileo 

and Chinese system Compass in the future) , are 

well known satellite navigation systems and uses 

parallel positioning techniques; the only difference 

is that GPS sends different messages on the same 

frequency (L1, L2, L5) and GLONASS sends the 

same message on multiple frequencies (L1, L2, …). 

It is important to consider in the near future the new 

statement of GNSS constellation including Galileo 

future European system and COMPASS the future 

Chinese system. Each space constellation has 

slightly different orbital plane parameters. In this 

paper, GPS and GLONASS C/A codes are consid-

ered in INS/GNSS data fusion.  

3.1 Equations of GPS Navigation 

The In this work, the standard, non differential, 

civilian signal is used. It provides a lower accuracy 
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but acceptable in low cost integrated navigation 

systems, is the lowest cost GPS solution is advanta-

geous because of its availability. The standard 

measurement of the GPS system is the pseudo-

range and the pseudo-rate. This defines the approx-

imate range from the user GPS receiver reference 

point to GPS or GNSS satellites. The pseudo-range 

is the true distance corrupted with differential errors 

specified by the following formula:  

 

vr clksionclkrjj  ,, ,       (9) 

where: 

jr  Pseudo-range from the user to the jth satel-

lite Geometric range from the user to the jth 

satellite; 

clkr ,  Range equivalent receiver clock bias offset 

from GPS system time; 

clks,  Range equivalent satellite clock bias offset 

from GPS system time; 

ion   Ionospheric signal attenuation error; 

v     Zero mean white noise. 

GNSS Satellite position is determined from 

broadcast ephemeris parameters. Included is a cor-

rection for the satellite clock bias which causes 

hundred meters error in positioning. There are mul-

tiple correction models that account for atmospher-

ic perturbations of the signal and its attenuation. In 

major research works, the model of  Klobuchar 

Ionospheric model is used. This model is defined 

by the following equation: 

 
P

tt
Aion

09 2
cos105


  ,           (10) 

where A and P represent the broadcast Klobuchar 

co-efficients summed with the latitude of the 

ionospheric sub-point and t0 represents the time of 

day (usually midday) at which ionospheric attenua-

tion is greatest. Once compensation for satellite 

clock bias and atmospheric effects are applied 

Eq. (9) is reduced to: 

vr clkrjj  ,
.                  (11) 

Eq. (10) is then simultaneously solved for posi-

tion and user clock bias resulting in the desired nav-

igation solution. The geometric range from Eq. (11) 

can be expanded explicitly:  

       vzZyYxX clkrjjjj  ,

2
1

222 , (12) 

where  Tjjj ZYX ,,   13  are components of the 

jth
  

satellite’s position in ECEF coordinates and 

 Tzyx ,,   13  are components of user’s filtered 

position in ECEF coordinates. 
A transformation from NED to ECEF and vice 

versa is required for the calculation of Eq. (11). 

These transformations are complicated by an ellip-

soidal earth model with large GPS satellite alti-

tudes. This study concerns non-intentional interfer-

ences and outliers/outages in GNSS signal for civil-

ian GNSS receivers. All adjacent communication 

systems to GNSS band which is a potential source 

of interferences and have been studied in the litera-

ture [11] are assumed to affect GNSS signal during 

an interval of time. In this work direct data fusion 

technique is applied to an important case when 

measurement outliers occur and affect GPS and 

GLONASS receivers during UAV navigation, with 

an impulsive noise modeled as Gaussian mixture 

noise [11].  

3.1 UAV GNC System 

(Guidance Navigation &  

Control)  

We now describe the application of the 

SPKF/CKF to the problem of loosely coupled 

GPS/INS integration for guidance, navigation and 

control (GNC) of an unmanned aerial vehicle 

(UAV). The main subcomponents of such a GNC 

system is a vehicle control system and a guidance 

& navigation system (GNS) as shown in Fig. 4.  

Fixed Wing and Rotor Wing UAVs have been sim-

ulated through different dynamical parameters. The 

embedded system includes an Inertial MEMS based 

IMU, an 10 Hz GPS / GLONASS synchronized 

receiver, and a DSP Design Autopilot REVO board 

for real time implementation. UAV nonlinear con-

trol system is based on non linear adaptive non 

Gaussian state estimators selected as EKF, and 

CKF with novel formulations Gaussian Sum Adap-

tive EKF GSAEKF and Gaussian Sum Adaptive 

CKF GSACKF. We have implemented EKF and 

Cubature based KF-CKF in sensor fusion algo-

rithms in Gaussian conditions and during outliers 

(modeled as non Gaussian) in order to observe the 

effect on the accuracy and the convergence of both 

filters. In the next sections, we will describe the 

model of UAV system process and observation 

(measurement) computed and simulated within 

EKF and CKF based data fusion algorithm.  

Gaussian sum filters have been developed for 

multiple non linear filters such as EKF, UKF and 

Particle filters, but have not been well explored us-

ing CKF and not yet developed with adaptive 

forms.  
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In this work, Gaussian sum based CKF is 

derivates and is applied to a specific case with non 

linear state estimation with non Gaussian impulsive 

noise modeled by Alpha-Stable density in addition 

to outliers that affect twice Gaussian component of 

the non Gaussian density. We then focus on the 

application of the adaptive fading EKF-AEKF and 

adaptive fading CKF-ACKF to the integrated navi-

gation problem. We specifically detail the devel-

opment of a Adaptive based Cubature Kalman Fil-

ter ACKF for loosely coupled implementation for 

integrating GPS measurements with an IMU within 

the context of autonomous UAV navigation.  

4. KALMAN FILTER AND 

ITS EXTENDED VERSION (EKF) 

In estimation theory, the optimal linear filter when 
affected by white Gaussian noises is called Kalman 
filter which is also equivalent to Maximum Likeli-
hood estimator. However in most real time and 
practical navigation applications, a nominal trajec-
tory does not exist beforehand. The solution is to 
use the current estimated state from the filter at 
each time step k as the linearization reference from 
which the estimation procedure can proceed. Such 
algorithm is known as extended Kalman filter 
(EKF) with its multiple versions [12]. Let us de-
scribe below the algorithm of EKF based on state 
space model as given by :  

  kkkk vuxfx ,,1  ,                  (13) 

 kkk wxgy , .                    (14) 

Linearization using Taylor approximation at the 

first order gives the state space model given in most 

referenced literature. Fk(.) is the Jacobian matrix of   

fk(.) and  Hk(.) is the Jacobian matrix of  hk(.). Thus, 

following algorithm is obtained: 

Initialization:    

0x̂ et 0P .                            (15) 

Prediction : 

.)ˆ()ˆ(

),ˆ(ˆ

11/

/1

k

T

kkkkkkk

kkkk

QxFPxFP

xfx







  

Update :  

  1

1/1/1/1/1/ )ˆ()ˆ()ˆ(


  kkk

T

kkkkkkkk

T

kkkk RxHPxHxHPK , (18) 

 

1/1/1/

1/1/

)ˆ(

)ˆ(ˆˆ









kkkkkkkkk

kkkkkkkk

PxHKPP

xhZKxx  

The meaning of the extended Kalman filter can 

be understudied by extending the same equation of 

Kalman filter at the difference that in the non linear 

filtering, EKF is sub-optimal filter. It requires then, 

more adaptive approaches in solving both filtering 

and control problems. There is another version of 

extended Kalman filter which could be developed 

at second order of Taylor approximation, this filter 

offers better results under high non linearity of the 

system’s dynamic and measurement model instead 

of high computational cost.  In the next section, a 

modern approach developed in 2009 based on cuba-

ture rule technique is presented and discussed in 

detail [13]. 

4.1 Cubature Kalman Filter - CKF  

Different estimators were introduced to solve 

non linear estimation problems; Sigma points 

Kalman filters (SPKF) introduced during the last 

decade. Both Unscented filters (UKF) and (CDKF) 

mean SPKF, in this case, the density of probability 

using a deterministic sigma points is estimated at 

the first and the second order moments of the RGV. 

For Central Difference Filter, it adopts an alterna-

tive method called central difference approxima-

tion. Like UKF, CDKF generates several points 

about the mean based on varying the covariance 

matrix along each dimension. It evaluates a non 

linear function at two different points for each di-

mension of the state vector that are divided by an 

(16) 

(17) 

(19) 

(20) 

 (16) 

 (17) 

 (18) 

 (19) 

 (20) 

Fig. 4. UAV Guidance, navigation and control 
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appropriate chosen interval, SPKF are strong esti-

mators and superior alternative to the EKF in sev-

eral applications with high non linearity [13].  CKF 

is known as the closest known approximation to the 

Bayesian filter for non linear estimation with 

Gaussian assumptions.  Such as for UKF and 

CDKF, CKF doesn’t require any Jacobian matrix 

computation of linearization. The basic steps are 

given in the next paragraphs. One can see [1] for 

more details. The key assumption of CKF is that 

the predictive density  1/ kk Zxp  where 1kZ  denotes 

the history of input measurement pairs up to k–1, 

and the filter likelihood  kk Zzp /  are both Gaussi-

an, which leads to a posterior Gaussian density

 kk Zxp / . Under these conditions, CKF reduces the 

computation of mean and covariance with more 

accuracy. The cubature based Gaussian filter algo-

rithms use cubature rules of the form:  

   



m

i

ii ffI
1

                    (21) 

to approximate the integral of the form:        

      


 


 dxexgdxxxg xx

n

T

2
1

.    (22) 

Eq. (22) is an integral of a non linear function 

multiplied by Gaussian weight. The unscented 

transformation can also be interpreted as an approx-

imation of the integral of the form eq. (27).  The 

technique introduced is based on Gaussian sum fil-

ters explored and given in detail by [13]. However 

it is proposed to model jamming GNSS signal by 

particular kind of Gaussian sum noise which is twin 

Gaussian sum affecting only measurement equa-

tion. Bellow the algorithm of Adaptive CKF pro-

posed and applied in this work:  

Prediction step 

1. Draw cubature points i , i = 1, 2, …, 2n 

from the intersections of the n-dimensional unit 

sphere and the Cartesian axes. Scaled by n . We 

can write then:  










ni

i

i

en

en ,
 

for i  =1, …, n,   i = n+1, …, 2n1.       (23) 

2. Propagate cubature points. The matrix square 

root is the lower triangular Cholesky factor: 

 

1/11/11/1,   kkikkkki mPX .              (24) 

3. Evaluate the cubature points with dynamic 

model function:  

 1/1,

*

1/,   kkikki Xf .                    (25) 

4. Estimate the predicted state mean:  

  
n

kkikk
n

m
2

1

*

1/,1/
2

1
.                   (26) 

5. Estimate the predicted error covariance:  

.
2

1
11/1/1/,

*

1/, 

   k

T

kkkk

T

kkikkix Qmm
n

P
k

    (27) 

Update step 

1. Draw cubature points i , i = 1, 2, …, 2n 

from the intersections of the n-dimensional unit 

sphere and the Cartesian axes. Scaled by n

(as in step 1).  

2. Propagate the cubature points.  

1/1/1/,   kkikkkki mPX .            (28) 

3. Evaluate the cubature points with the measure-

ment model.   

 1/,1/,   kkikki XhY .                   (29) 

4. Estimate the predicted measurement:  








 
n

i

kkikk Y
n

y
2

1

1/,1/
2

1
ˆ .                (30) 

5. Estimate the innovation covariance matrix:  




 
n

i

k

T

kkkk

T

kkikkikk RyyYY
n

S
2

1

1/1/1/,1/,1/
ˆˆ

2

1
.  

(31) 

6. Estimate the cross covariance matrix:  




 


n

i

T

kkkk

T

kkikki ymYX
n

P
kykkx

2

1

1/1/1/,1/,
ˆ

2

1
1/

. 

(32)  

7. Estimate the Kalman gain:  

1

1/1/,



 kkkkxyk SPK .                  (33) 

8. Estimate the update state:                     

   1/1/
ˆ

  kkkkkkk yyKmm .       (34) 

9. Estimate the error covariance: 

T

kkkkkkkk KSKPP 1/1//   .        (35) 

Note: Comparing with SPKF, there are no pa-

rameters to tune in CKF approximating non linear 

 (33) 

 (26) 

 (25) 

 (29) 

 (27) 

 (30) 

 (31) 

 (32) 

 (34) 

 (35) 

 (28) 
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functions of the system and measurement. Another 

alternative to approximate the lower bound for non 

linear state estimation with additive Gaussian nois-

es is given and described in [15].  

4.2 Non Gaussian noise mathematical 

model  

Generally, all filtering problems in linear and/or 

in nonlinear dynamics are assumed to process in 

Gaussian environment, in such conditions, Kalman 

filter is the optimal solution for linear state space 

model and its non linear variant EKF provide a 

good results in major aerospace and control appli-

cation. Nevertheless that in real application and in 

most practice, noises and especially measurement 

noises are not Gaussian but non Gaussian. In this 

case, all previous Kalman filtering algorithms will 

not work well. For this purpose and in the case of 

GNSS interferences and outliers which is a possible 

and recurrent problem in some navigation environ-

ments, we propose to model measurement noises as 

“v” impulsive non Gaussian noise. The non Gaussi-

an noise simulated in this paper and use to derive 

the Gaussian sum filters is defined by the mathe-

matical function as given below: 

 

  

























2

2

2

2

2

2

1

2

2

1
2

exp
22

exp
2

1







 xx
xf ,   

(36) 

        2

2

2

1 ,0,01 knp .        (37) 

The following figure describes how direct fil-

tering approach based on Gaussian sum  filters is 

working under interferences modeled by Gaussian 

sum density. The direct approach has been demon-

strated as superior alternative to the indirect ap-

proach in the case of outliers and is selected to im-

prove this accuracy by application of modern non 

linear filtering approaches. It is expected to get 

much better results than EKF and UKF used by au-

thors in [16]. 

In Fig. 5, one can observe the Gaussian mixture 

of two Gaussian densities following the mathemati-

cal function given in Eq. (23) and Eq. (24), which 

provide the sum of two symmetric weighted Gauss-

ian densities.  

In green color, it is possible to observe the 

modification of the Gaussian curve amplitude 0.5 

and 1. The twine Gaussian densities and their sum 

are centered on zero. 

In Fig. 5, one can observe the Gaussian mixture 

of two non-centered Gaussian densities following 

the mathematical function given in Eq. (23) and 

Eq. (24), which provide the sum of two symmetric 

weighted Gaussian densities with respective mean 

and covariance (5, Sigma1) and (20, Sigma2). In 

green color, it is possible to observe the mixture 

appearing in the Gaussian curve amplitude 0.5 and 

0.9 . The twine Gaussian densities and their sum are 

non centered on zero.  

 

 

Fig. 5. Pdf of non Gaussian density function  

of (   = 0.5) for centred noises 

 

Fig. 6. Pdf of non Gaussian density function of 

(  =0.5) for non-centered noises 

Note: Comparing with SPKF, there are no pa-

rameters to tune in CKF approximating non linear 

functions of the system and measurement. Based on 

similar idea such as for sub optimal fading factor,  

it is possible to combine Sigma Point Kalman Fil-

ters (UKF, CDKF, CKF)  and adaptive fading ap-

proach. It is possible to define then the fading fac-

tor such as given bellow: One of the approaches for 

adaptive processing is on the incorporation of fad-

ing factors concept of adaptive fading Kalman filter 

(AFKF) and solved the state estimation problem. 

The AFKF is essentially a covariance scaling-based 

Kalman filter (scaling to the P matrix). The ap-

proach tries to estimate a scale factor to increase the 

predicted variance components of the state vector. 

In the AFKF, suboptimal fading factors are intro-
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duced into the algorithm. The idea of fading 

Kalman filtering is to apply a factor matrix to the 

predicted covariance matrix to deliberately increase 

the variance of the predicted state vector:   
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with parameters defined below:                                       
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The time-varying suboptimal scaling factor is 

incorporated, for on-line tuning the covariance of 

the predicted state, which adjusts the filter gain, and 

accordingly the STKF is developed. The subopti-

mal scaling factor in the time-varying filter gain 

matrix is given by: Thus, the covariance matrices 

need to be updated based on the adaptive fading 

factor such as given in the following equations:  
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The key parameter in this adaptive algorithm is 

the fading factor. It requires the defined parameters; 

some other techniques in literature use multiple fad-

ing factors which are not always superior to the 

single fading factor and are commonly selected. 

Then, the last estimation step of Gaussian mixture 

algorithm can be applied following the method and 

equations described in [17]. A system with nonline-

arities in both the state and the measurement equa-

tions is considered. Also both noises kk vw , and the 

initial state x0 will be described by weighted sums 

of Gaussian pdf's [18]. Consider the following non-

linear non-Gaussian system: 

Robust estimation step 
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On Fig. 10, one can observe robust adaptive in-

ertial navigation system with external aid “GNSS” 

based on direct information fusion and parallel non 

linear adaptive cubature Kalman filters. 

Gaussian Mixture “EKF and CKF” are applied 

in order to prevent divergence due to outliers or 

multipath problems modeled as non Gaussian nois-

es in one part, and also due to vibration of inertial 

sensors, temperature elevation, sensors noise...etc. 

Robust, reliable detection and removal of outliers is 

essential in order to process these kinds of GNSS 

data. Conceptually, the implementation principle of 

SPKF/CKF resembles that of the EKF, the imple-

mentation, however, is significantly simpler be-

cause it is not necessary to formulate the Jacobian 

and/or Hessian matrices of partial derivatives of the 

nonlinear dynamic and measurement equations, 

which is very important for real time implementa-

tion.  

Before, implementing adaptive SPKF and CKF, 

we propose to observe the effect of Innovation 

based adaptive EKF on the navigation state during 

 (46) 

 (44) 

 

(45) 

 (43) 

Fig.  Robust Adaptive INS/GNSS integrated navigation system 7.
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outliers as a first experience, thus, go in more ad-

vanced signal processing for UAV data fusion dur-

ing GNSS outliers which provides additional added 

values to previous work in this field [20–23]. 

5. SIMULATION OF EKF-CKF-AEKF-

ACKF-GSAEKF-GSCKF-GSACKF  

The conditions of simulation are described in 

the Table 1 and Table 2:  T = 50 s, N = 5000; 

dt = 0.001; g = 9.81 m/s/s; Outlier duration of time 

ODT = 19 s, epsilon = 0.15; U = 500.  
Table 1  

Initial Motion coordinates and Initial Values of 

Covariance matrices P,Q,R: 

Distance 

N,E,D 

(meter) 

Velocity 

N,E,D  

(m/s) 

Attitude angles 

pitch, roll, yaw 

(rad) 

1000 260 10 /180 

1000 70 45 /180 

1000 50 10 /180 

 
Table 2  

Estimation 

Covariance 

)diqg( P  

System 

Covariance 

)diqg(Q  

Measurement 

Covariance 

)diqg( R  

100 10 100 

100 10 100 

100 10 150 

10 2 2 

10 2 2 

10 2 5 

10 /180 0.5 /180 1.5 /180 

10 /180 0.5 /180 1.5 /180 

10 /180 0.5 /180 1.5 /180 

 

From Fig. 5 till Fig. 12, one can observe the 

state estimation results of the non linear part de-

scribed in the previous section, with velocity and 

attitude observation based on multiple GNSS an-

tenna during interferences and outliers.   

Yaw angle estimation  

On Fig. 8, it is possible to observe during 50 s 

the superiority of GSACKF and GSCKF comparing 

with GSAEKF and GSEKF. In fact, the best esti-

mator centered and unbiased is GSACKF.  On 

Fig.9, one can distinguish coherent tracking be-

tween GSEKF and GSAEKF, between GSACKF 

and GSCKF. On Fig. 10 it is easy to classify three 

filtering categories: GSACKF with GCKF con-

verge. GSEKF and GSAEKF with AEK are biased 

estimators. Finally, CKF, ACKF and EKF diverge 

from the real yaw angle values.   

 

 

Fig. 8. Yaw angle Estimation 

 

Fig. 9. Yaw angle Estimation (zoom) 

 

Fig. 10. Yaw angle Estimation (zoom) 
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Fig. 11. Pitch angle estimation 

 

Fig. 12. Pitch angle estimation (zoom) 

 
Fig. 13. Pitch angle estimation (zoom) 

On Fig. 11 we can observe pitch angle state es-

timation during 50 s. Measurements are affected by 

non Gaussian impulsive noise with outliers during 

19 s where it is easy to distinguish instability of 

EKF, GSEKF and ACKF, when the opposite with 

stable GSACKF, GSCKF and AEKF. On Fig. 12 it 

is also possible to compare GSACKF with GSCKF 

in one hand and GSAEKF with AEKF in the other 

hand. The most accurate filters are then GSACKF 

and GSCKF. On Fig. 13, clearly the difference in 

magnitude estimation of pitch angle values is be-

tween 0–1.5 deg from the true value, GSACKF, 

GSCKF, GSAEKF, AEKF during our analysis till 

23 s.  

Roll angle estimation:  

 
Fig. 14. Roll angle estimation 

 

Fig. 15. Roll angle estimation 

On Fig. 14, roll angle estimation under sym-

metric mixture noise with outliers is computed and 

performed. One can divide three filters categories: 

CKF, ACKF divergence, EKF, AEKF, GSAEKF 

with inversed GSEKF tracking characteristics. Fi-

nally, GSCKF and GSACKF carried out fast con-

vergence and high stability. 

On Fig. 15, one can measure the difference be-

tween roll angle amplitude values and multiple fil-

tering algorithms estimation, error is between       

0–1.5 deg. Finally, on Fig. 16, it is interesting to 

observe coherence between EKF, AEKF and 
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GSAEKF, in addition to the divergence of CKF and 

ACKF.   

 
Fig. 16. Roll angle estimation 

Velocity estimation  

On Fig. 17, vertical velocity estimation is ob-

served, with two distinguished filter classes: EKF, 

CKF, AEKF and ACKF are instable and cannot 

track the real velocity. The second class includes 

GSEKF, GSAEKF, GSCKF and GSACKF. The 

best estimator is: GSACKF. This is confirmed by 

different state estimation with different non lineari-

ty such as velocity and attitude states. After multi-

ple simulations, it is clear through state and related 

MSE estimation that Innovation based Adaptive 

Gaussian sum CKF called GSACKF provide an 

ameliorated filtering accuracy comparing with 

CKF, ACKF, GSCKF, and the conventional EKF, 

AEKF, in addition to GSAEKF. 

 

 

Fig. 17. Vertical velocity estimation 

5.1 Gaussian sum based adaptive extended- 

Cubature Kalman Filters Simulation 

The simulation conditions of the previous sec-

tion are considered in this experience to estimate 

first, attitude estimation with yaw, pitch and roll 

angles estimation. Then, velocity through 03 axes 

of navigation (north, east, down) are observed and 

discussed, with finally, the linear part in state esti-

mation not presented in this paper with position 

state vector estimation which follow linear discrete 

time model.  

 

Fig. 18. East velocity estimation 

 

Fig. 19. North velocity estimation 

5.2 Observation of adaptive non linear 

state estimation for IMU/GNSS data 

fusion during outliers 

During simulations, the following algorithms 

are compared and applied ton MEMS IMU/GNSS 

data fusion during 50 seconds. In this interval, non 

Gaussian measurement noise affects GNSS receiv-

ers with twine outliers scenario simulated and acti-

vated to perturb conventional algorithms with their 

Gaussian sum modifications between 7 s and 17 s.  

It is then possible to divide the observation in two 

principal parts: attitude estimation and velocity es-

timation. Both are non linear but present differ-

ences in non linearity degrees. 
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For roll attitude estimation, during 50 s, an im-

portant results consists on divergence of CKF in-

stead of EKF convergence. EKF outperforms CKF 

during severe conditions which are an interesting 

drawback of CKF, presented in the specialized lit-

erature as the most accurate filter compared with 

EKF and SPKF variants.  

For velocity estimation, during 50 s and espe-

cially between 7 s and 17 s, CKF outperforms EKF 

and their adaptive forms AEKF and ACKF present 

comparative results during velocity outliers. Again, 

for attitude estimation, AEKF ensure robust estima-

tion compared with ACKF, where AEKF still sta-

ble, ACKF diverges. It is again an important draw-

back for Cubature Kalman Filter CKF. Finally 

Gaussian sum based CKF and ACKF are the best 

estimators with better tracking capability and accu-

racy during 50 s for both attitude and velocity esti-

mation. It is interesting to observe that GSCKF per-

forms GSACKF which is nevertheless the best fil-

ters with the best estimation accuracy in all cases. 

CONCLUSIONS 

The design of non linear Gaussian sum based 

adaptive filters and the associated data fusion based 

on EKF, and CKF were deeply studied for MEMS 

IMU/GNSS sensor fusion during GNSS outliers in 

attitude and velocity estimation. Based on the inno-

vation fading factor, 04 non linear filtering ap-

proaches EKF, AEKF, CKF and ACKF were modi-

fied using this fading factor for covariance estima-

tion during GPS/GLONASS outages. During this 

interval, measurement noises are assumed non 

Gaussian and impulsive, which has decreased adap-

tive EKF and adaptive CKF accuracy, only GSCKF 

and GSACKF provide good estimation with higher 

accuracy. For attitude and velocity estimation, 

GSACKF outperforms all filters GSAEKF, 

GSEKF, AEKF, ACKF, CKF and EKF. This repre-

sents an interesting approach to solve combined 

unconventional noises environment with non 

Gaussian and outliers ate ones. By the way, several 

solutions were proposed and ameliorated the accu-

racy with time of convergence of each modified 

filtering algorithm. However according the RMSE 

criteria, Gaussian sum based Cubature Kalman Fil-

ter CKF during outliers demonstrated the best ro-

bustness and estimation accuracy. Gaussian sum 

based adaptive CKF algorithm is expected to be 

tested on real REVO board embedded on UAV dur-

ing real flight for long duration tests and validation. 

It should be compared to most performing filters 

such as particle filters and modern approaches such 

as Quadrature Kalman Filter QKF in addition to 

other robust techniques such as demonstrated by 

authors in other tracking application based on Hu-

ber estimation [19]. 
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