УДК 621.9.047

МОДЕЛИРОВАНИЕ ЭЛЕКТРОХИМИЧЕСКОЙ ОБРАБОТКИ ОСЕСИММЕТРИЧНЫМ ЭЛЕКТРОДОМ-ИНСТРУМЕНТОМ С ПЕРЕМЕННОЙ ПОЛЯРИЗАЦИЕЙ АНОДА

В. П. Житников¹, Н. М. Шерыхалина², А. А. Соколова³

¹ zhitnik@mail.ru, ² n_sher @mail.ru, ³ alexandrakrasich@gmail.com

ФГБОУ ВО «Уфимский государственный авиационный технический университет» (УГАТУ)

Поступила в редакцию 15.08.2019

Аннотация. Процесс электрохимической обработки моделируется с помощью решения задачи для определения аналитической функции на параметрической области в виде круга. В отличие от плоской задачи, для определения напряженности электрического поля используются интегральные преобразования аналитической функции. На этой основе разработан численно-аналитический метод решения задачи, позволивший использовать для моделирования немонотонную зависимость плотности тока от анодного потенциала. Получены распределения потенциала и составляющих плотности тока на аноде.

Ключевые слова: электрохимическая обработка; осесимметричная задача; анодный потенциал; немонотонная зависимость; комплексные переменные; интегральные преобразования.

введение

Процесс электрохимической обработки (ЭХО) определяется физико-химическими свойствами пары металл-электролит. В частности, электродный потенциал анода существенно зависит от плотности тока *J* [1].

Плоские задачи с монотонной зависимостью анодного потенциала $\Phi_a(J)$ решались в [2–4] для двугранного и криволинейного бесконечного анода, при этом требование монотонности $\Phi_a(J)$ было существенно для предложенных методов решения задач. В [5–7] решены плоские задачи с немонотонной зависимостью нормальной составляющей плотности тока $J_n = F_1(\Phi_a)$ с использованием степенных рядов. В данной работе решена осесимметричная задача обработки точечным электродоминструментом.

ПОСТАНОВКА И МЕТОД РЕШЕНИЯ ЗАДАЧИ

Рассмотрим осесимметричную задачу о распределении электрического поля между точечным электродом-инструментом (ЭИ) *C*, расположенным на расстоянии *h* от плоского анода *AB* (рис. 1, *a*), *Z*=*X*+*iY*. Примем во внимание, что анодный потенциал анода зависит от плотности тока. Используется зависимость плотности тока от Φ_a , т.е. нормальная составляющая $J_n = F_1(\Phi_a)$ [1].

Задача решается в параметрическом виде. В качестве области изменения параметрического переменного $\chi=\sigma+i\upsilon$ удобно выбрать полукруг с соответствием точек, указанным на рис. 1, *б*.

Функция

$$Z = h \frac{\zeta^2 + 1}{\zeta^2 - 1}$$
 (1)

Работа поддержана грантом РФФИ 17-07-00356.

при h>0 конформно отображает полукруг плоскости ζ на левую полуплоскость с разрезом. При этом граница $\zeta = e^{i\sigma}$ отображается на поверхность *ADB*, граница Im $\zeta = 0, -1 \le \text{Re } \zeta \le 1$ – на разрез *A 'CB'*. Положение точечного источника Z(0) = -h.

Рис. 1. Формы области на плоскостях: *а – физической; б – параметрической ζ*

При допущении об однородности среды электрическое поле является потенциальным и соленоидальным, и для решения плоских задач такого типа широко применяются методы теории аналитических функций комплексного переменного [1–7], поскольку удовлетворяются уравнения Коши–Римана для потенциала Ф и функции тока Ψ [8]. Для осесимметричного поля соответствующие уравнения выглядят следующим образом

$$\frac{\partial \Phi}{\partial X} = \frac{1}{Y} \frac{\partial \Psi}{\partial Y}, \quad \frac{\partial \Phi}{\partial Y} = -\frac{1}{Y} \frac{\partial \Psi}{\partial X}, \quad (2)$$

(если осью симметрии является ось X).

Наличие множителя 1/Y в правых частях уравнений не позволяет напрямую использовать аналитические функции для моделирования распределения потенциала и функции тока. Однако Г. Н. Положим [9] были разработаны интегральные преобразования аналитических функций комплексного переменного f(Z), позволяющие получить нужные зависимости

$$\Phi(X_0, Y_0) = -\frac{1}{\pi} \operatorname{Im} \int_{X_1}^{Z_0} f(Z) \frac{dZ}{\sqrt{(Z - Z_0)(Z - \overline{Z}_0)}}, \quad (3)$$

$$\Psi(X_0, Y_0) = \frac{1}{\pi} \operatorname{Im} \int_{X_1}^{Z_0} f(Z) \frac{(Z - X_0) dZ}{\sqrt{(Z - Z_0)(Z - \overline{Z}_0)}}, \quad (4)$$

где $Z_0 = X_0 + iY_0$ – внутренняя или граничная точка поля; $X_1 + i0$ – некоторая точка на оси симметрии X; $\overline{Z}_0 = X_0 - iY_0$.

Таким образом, осесимметричная задача решается путем сведения ее к вспомогательной плоской задаче. Потенциал и функция тока осесимметричного поля получаются путем интегральных преобразований (3),(4), примененных к функции f(Z)=dw/dZ[1], где w(Z) – комплексный потенциал плоского поля.

Нормальная и тангенциальная составляющие плотности электрического тока на аноде $\zeta = e^{i\sigma}$ равны

$$J_{n} = v_{1}J_{x},$$

$$J_{x} = \frac{\partial \Phi_{a}}{\partial X} = \frac{1}{Y}\frac{\partial \Psi}{\partial Y} = \frac{1}{Y}\frac{\partial \Psi}{\partial \sigma}\left(\frac{\partial Y}{\partial \sigma}\right)^{-1} =$$

$$= -\frac{\sin^{2}\sigma}{\operatorname{ctg}\sigma}\frac{\partial \Psi}{\partial \sigma}, \qquad (5)$$

$$J_{t} = v_{1}J_{y},$$

$$J_{y} = \frac{\partial \Phi_{a}}{\partial Y} = \frac{\partial \Phi_{a}}{\partial \sigma}\left(\frac{\partial Y}{\partial \sigma}\right)^{-1} =$$

$$\sin^{2}\sigma\frac{\partial \Phi_{a}}{\partial \sigma}, \qquad (6)$$

где v₁ – коэффициент, определяемый ниже.

Способ решения задачи заключается в представлении потенциала и функции тока в виде сумм

$$\Phi(X_{0}, Y_{0}) = \Phi_{0}(X_{0}, Y_{0}) + \Phi_{1}(X_{0}, Y_{0}) =$$

$$= -\frac{1}{\pi} \frac{v_{2}}{\sqrt{(X_{0} + 1)^{2} + Y_{0}^{2}}} -$$

$$-\frac{1}{\pi} \operatorname{Im} \int_{0}^{\sigma_{0}} \frac{\partial w_{1}}{\partial \sigma} (\sigma) \frac{d\sigma}{\sqrt{(Z - Z_{0})(Z - \overline{Z}_{0})}}, \quad (7)$$

$$\Phi(X_{0}, Y_{0}) = \Phi_{0}(X_{0}, Y_{0}) + \Phi_{1}(X_{0}, Y_{0}) =$$

$$= -\frac{1}{\pi} \frac{v_{2}(X_{0} + 1)}{\sqrt{(X_{0} + 1)^{2} + Y_{0}^{2}}} +$$

$$+ \frac{1}{\pi} \operatorname{Im} \int_{0}^{\sigma_{0}} \frac{\partial w_{1}}{\partial \sigma} (\sigma) \frac{(Z - X_{0})d\sigma}{\sqrt{(Z - Z_{0})(Z - \overline{Z}_{0})}}, \quad (8)$$

где первые слагаемые представляют собой потенциал и функцию тока точечного источника [1].

Будем искать решение в виде функции

$$f_1(\zeta) = \frac{\partial w_1}{\partial \zeta}(\zeta)$$

Искомыми параметрами аналогично [5] будут коэффициенты разложения функции $f_1(\zeta)$ в степенной ряд

$$\frac{dw_1}{d\zeta} = \sum_{m=1}^{\infty} c_{2m-1} \zeta^{2m-1}.$$
 (9)

Другим методом решения задачи является использование вместо ряда интеграла Шварца. Для этого удобнее использовать параметрическую плоскость в виде полосы (рис. 2). Отображение полукруга плоскости ζ на полосу χ осуществляется функцией

Рис. 2. Формы области на параметрической плоскости χ

Составляющие плотности электрического тока на аноде равны

$$J_{x} = \frac{1}{Y} \frac{\partial \Psi}{\partial \chi} \left(\frac{\partial Y}{\partial \chi} \right)^{-1} = \frac{1}{\operatorname{sh} \pi \chi \operatorname{ch} \pi \chi} \frac{\partial \Psi}{\partial \chi}, \quad (10)$$

$$J_{y} = \frac{\partial \Phi_{a}}{\partial \chi} \left(\frac{\partial Y}{\partial \chi} \right)^{-1} = \frac{1}{\operatorname{ch} \pi \chi} \frac{\partial \Phi_{a}}{\partial \chi}.$$
 (11)

Искомыми параметрами аналогично [7], будут значения действительной части функции Re $f_1(\xi_m) = f_m$ в узловых точках $\xi_m, (m = 1, ..., n - 1)$. При $\xi = \xi_0 = 0$ Re $f_1(\xi_0) = 0$. При $\xi = \xi_n$ примем Re $f_1(\xi_n) = 0$. Значения Re $f_1(\xi)$ в промежуточных между узловыми точках найдем с помощью кубического сплайна $S(\xi)$.

Функция $f_1(\chi)$ должна обладать определенными свойствами: при $\chi = \xi + i0$ ее действительная часть должна быть нечетной функцией ξ , при $\chi = \xi + i/2$ $f_1(\xi + i/2)$ должна быть чисто действительной. Тогда ее, согласно принципу симметрии [8], можно аналитически продолжить на полосу единичной ширины. При этом Re $f_1(\xi + i) = \text{Re } f_1(\xi + i0)$.

Для восстановления функции $f_1(\chi)$ используем формулу Шварца [8]

$$f_1(\chi) = i \left[\int_0^\infty S(\xi) \frac{\operatorname{sh} \pi \xi}{\operatorname{ch} \pi \xi + \operatorname{ch} \pi \chi} d\xi - \int_0^\infty S(\xi) \frac{\operatorname{sh} \pi \xi}{\operatorname{ch} \pi \xi - \operatorname{ch} \pi \chi} d\xi \right].$$

Интегралы вычисляются модифицированным методом Гаусса [10]. Зависимости (7), (8) интерполируются сплайнами, при этом коэффициенты этих сплайнов равны значениям производных этих зависимостей, которые используются в (5), (6) или в (10), (11) для вычисления составляющих плотности тока.

Рассмотрим зависимость анодного потенциала в виде функции (рис. 3)

$$J_n(\Phi_a) = -\frac{\Phi_a}{24} - \frac{5}{6} \Phi_a^2 + 0.1 \operatorname{tg}(2.5\Phi_a). \quad (12)$$

Такая немонотонная зависимость характерна для обработки в пассивирующих электролитах [1, 2].

Задача решается методом коллокаций. Равенство (14) выполняется в дискретных точках σ_m ; m = 1, ..., n - 1. Полученная таким образом система n-1 нелинейных уравнений решается методом Ньютона с регулированием шага.

Значение v_1 =2,6 подобрано экспериментально.

ЧИСЛЕННЫЕ РЕЗУЛЬТАТЫ

На рис. 4 показано распределение потенциала по поверхности анода, на рис. 5 – распределение функции тока. По оси абсцисс отложена безразмерная величина y=Y/h. Как видно из рисунков, функции $\Phi(y)$ и $\Psi(y)$, как и следовало ожидать, монотонно возрастают.

На рис. 6 показана конфигурация сечения Ψ , Φ которая является аналогом плоскости W, однако в осесимметричной задаче не является плоскостью изменения аналитической функции.

На рис. 7 приведено распределение тангенциальной составляющей плотности тока. В силу осевой симметрии в точке D, расположенной на оси значение $J_t(y)=0$, затем при увеличении у функция резко возрастает, переходит через максимум и убывает до нуля на периферии.

Рис. 7. Распределение тангенциальной составляющей плотности тока по поверхности анода

На рис. 8 приведено распределение нормальной составляющей плотности тока. Видно, что зависимость $J_n(y)$ имеет более сложный вид. В соответствии с рис. 3 эта зависимость имеет локальные минимум и максимум.

Рис. 8. Распределение нормальной составляющей плотности тока по поверхности анода

Аналогичные особенности имеет зависимость полной плотности тока J(y) (рис. 9).

Рис. 9. Распределение полной плотности тока по поверхности анода

Оценка погрешности численного решения проводилась методом фильтрации результатов вычислений [11–14]. На рис. 10, а, б результаты фильтрации представлены в логарифмическом масштабе. По оси ординат отмечены десятичные логарифмы абсолютных величин полученных оценок абсолютных погрешностей $\Delta - \lg \Delta$ (точность полученных данных). По оси абсцисс отложены десятичные логарифмы числа отрезков разбиения *n* (которое изменялось от 20 до 640 с увеличением в 2 раза). В качестве оцениваемых параметров на рис. 10, а рассмотрен потенциал центральной точки $y_D=0$, а на рис. 10, δ – нормальная составляющая плотности тока в той же точке. Цифрой 0 отмечены оценки точности вычисленных данных, цифрами 1, 2 результаты первой и второй фильтрации. Разность ординат между двумя кривыми представляет собой логарифм отношения оценок для разных фильтраций. Это отношение называется размытостью оценки. С помощью фильтрации получены и под- $\Phi_D=0.58359\pm10^{-4}$, тверждены значения $J_G=7.41\pm10^{-2}$. Следует отметить, что вследствие (5) значения параметров в точках близких к оси симметрии определяются с наихудшей точностью.

Рис. 10. Оценка абсолютной погрешности решения осесимметричной задачи: *a* – потенциала центральной точки D; *б* – напряженности в точке D

ЗАКЛЮЧЕНИЕ

Таким образом, в данной работе предложен метод численного решения задачи начальной электрохимической обработки точечным электродом-инструментом в осесимметричной постановке, основанный на интегральных преобразованиях аналитической функции. Найдены распределения составляющих напряженности и численные значения, характеризующие эти значения.

Проведена оценка погрешности параметров, показавшая, что значения потенциала границы вычислены с точностью до 4-значных цифр.

СПИСОК ЛИТЕРАТУРЫ

1. Житников В. П., Зайцев А. Н. Импульсная электрохимическая размерная обработка. М.: Машиностроение, 2008. 407 с. [V. P. Zhitnikov, A. N. Zaytsev, *Pulse electrochemical machining*, (in Russian). Moscow: Mashinostroenie, 2008.]

2. Клоков В. В., Шишкин С. Е. Стационарное анодное формообразование двугранным катодом при неравномерной поляризации анода // Тр. семин. по краевым задачам: сб. науч. тр. Казань: Казанск. ун-т, 1985. Вып. 22. С. 117–124. [V. V. Klokov, S. E. Shishkin "Stationary anodic shaping by two-sided cathode under non-uniform anodic polarization" (in Russian), in *tr. semin. po kraevym zadacham*, Kazan: KGU, vol. 22, pp. 117-124, 1985.]

3. Газизов Е. Р., Маклаков Д. В. Анодное формообразование двугранным катодом при неравномерной поляризации анода // Известия вузов. Авиационная техника. 2002. № 4. С. 55–57. [Е. R. Gazizov, D. V. Maklakov, "Anodic shaping by two-sided cathode under non-uniform anodic polarization", (in Russian), in *Izvestiya vuzov. Aviatsionnaya tekhnika*, no. 4, pp. 55-57, 2002.]

3. Газизов Е. Р. Анодное формообразование криволинейным катодом при неравномерной поляризации анода // Известия КГАСУ. 2006. № 1 (5). С. 132–135. [Е. R. Gazizov, "Anodic shaping by curvilinear cathode under nonuniform anodic polarization", (in Russian), in *Izveststiya KGASU*, no. 1 (5), pp. 132-135, 2006.]

5. Муксимова Р. Р., Житников В. П., Зарипов А. А. Исследование влияния неравномерности потенциала при электрохимической обработке в пассивирующем электролите // Теория и практика современных электрохимических производств: мат. III Междунар. науч.-практ. конф. СПб. 2014. С. 37-38. [R.R. Muksimova. V. P. Zhitnikov, A. A. Zaripov, "Investigation of potential nonuniformity at electrochemical machining in passivating electrolyte", (in Russian), in Teoriya i praktika sovremennyh elektrohimicheskih proizvodstv: mat. III Mezhdunar. nauch.prakt. konf., S. PetersBurg, 2014, pp. 37-38.]

6. Зарипов А. А. Моделирование электрохимической обработки стержневым электрод-инструментом в пассивирующем электролите // Теоретические и прикладные аспекты современной науки: мат. VIII Междунар. науч.практ. конф. Белгород, 2015. Т. 1. С. 8–14. [А. А. Zaripov, "Modeling of electrochemical machining by rode electrodetool in passivating electrolyte", (in Russian), in *Teoreticheskie i prikladnye aspekty sovremennoj nauki: mat. VIII Mezhdunar. nauch.-prakt. konf.*, Belgorod, 2015, vol. 1, pp. 8-14.]

7. Житникова Н. И., Зарипов А. А., Федорова Г. И. Моделирование электрохимической обработки круглым электрод-инструментом в условиях непостоянства электродных потенциалов // Тенденции развития науки и образования: мат. XXIX Междунар. науч.-практ. конф. Самара, 2017. Ч. З. С. 5–9. [N. I. Zhitnikova, A. A. Zaripov, G. I Fedorova, "Modeling of electrochemical machining by circle electrode-tool in conditions of non-constant electrode potentials", (in Russian), in *Tendencii razvitiya nauki i obrazovaniya: mat. XXIX Mezhdunar. nauch.-prakt. konf.*, Samara, 2017, vol. 3, pp. 5-9.]

8. Лаврентьев М. А., Шабат Б. В. Методы теории функций комплексного переменного. М.: Наука, 1987. 688 с. [M. A. Lavrentiev, B. V. Shabat, *Methods of the theory of functions of complex variables,* (in Russian). Moscow: Nauka, 1987.]

9. Положий Г. Н. Обобщение теории аналитических функций комплексного переменного. Киев: Киев. ун-т, 1965. 442 с. [G. N. Pologiy, *Generalization of the theory of functions of complex variable*, (in Russian). Kiev: Kiev University, 1965.]

10. Житников В. П., Зиннатуллина О. Р., Житникова Н. И. Модификация методов численного интегрирования для решения осесимметричных задач // Вестник УГАТУ. 2015. Т. 19, № 2 (68). С. 179–182. [V. P. Zhitnikov, O. R. Zinnatullina, N. I. Zhitnikova, "Modification of methods of numerical integration for axisymmetrical problems solution", (in Russian), in *Vestnik UGATU*, vol. 19, no. 2 (68), pp. 179-182, 2000.]

11. Житников В. П., Шерыхалина Н. М. Методы верификации математических моделей в условиях неопределенности // Вестник УГАТУ. 2000. Т. 1, № 2. С. 53–60. [V. P. Zhitnikov, N. M. Sherykhalina, "Methods of verification of mathematical models in conditions of inconfidence", (in Russian), in *Vestnik UGATU*, vol. 1, no. 2, pp. 53-60, 2000.]

12. Житников В. П., Шерыхалина Н. М. Обоснование методов фильтрации результатов численного эксперимента // Вестник УГАТУ. 2007. Т. 9, № 3 (21). С. 71–79. [V. P. Zhitnikov, N. M Sherykhalina, "Justification of the filtration methods of numerical experiment results", (in Russian), in *Vestnik UGATU*, vol. 9, no. 3 (21), pp. 71-79, 2007.]

13. Шерыхалина Н. М. Методы обработки результатов численного эксперимента для увеличения их точности и надежности // Вестник УГАТУ. 2007. Т. 9, № 2 (20). С. 127–137. [N. M. Sherykhalina, "Methods of processing of numerical experiment results for its accuracy and reliability increase", (in Russian), in *Vestnik UGATU*, vol. 9, no. 2 (20), pp. 127-137, 2007.]

14. Zhitnikov V. P., Sherykhalina N. M., Sokolova A. A. Problem of Reliability Justification of Computation Error Estimates // Mediterranean Journal of Social Sciences. 2015. Vol. 6, No. 2. Pp. 65–78. [V. P. Zhitnikov, N. M. Sherykhalina, A. A. Sokolova, "Problem of Reliability Justification of Computation Error Estimates", in *Mediterranean Journal of Social Sciences*, vol. 6, no. 2, pp. 65-78, 2015.]

ОБ АВТОРАХ

ЖИТНИКОВ Владимир Павлович, проф. каф. выч. мат. и кибернетики. Дипл. инж.-физ. (МФТИ, 1973). Д-р физ.-мат. наук по мех. жидкости, газа и плазмы (Казанск. ун-т, 1993). Засл. деят. науки РБ. Иссл. в обл. волн. течений жидкости, э/хим. формообразования, числ.-аналит. методов.

ШЕРЫХАЛИНА Наталия Михайловна, проф. каф. ВМиК. Дипл. инж.-системотехн. (УГАТУ, 1993). Д-р физ.-мат. наук по мат. моделированию, числ. методам и комплексам программ (УГАТУ 2012). Иссл. в обл. волновых течений жидкости, разработки числ.-аналит. методов, методов оценки погрешности и достоверности числ. результатов. СОКОЛОВА Александра Алексеевна, аспирант каф. выч. мат. и кибернетики. Дипл. магистр по прикладн. математике и информатике (УГАТУ, 2014). Иссл. в обл. решения задач матем. моделирования физ. процессов.

METADATA

- **Title:** Modelling of electrochemical machining by the axisymmetric electrode tool with variable anode polarization.
- **Authors:** V. P. Zhitnikov¹, N. M. Sherykhalina², A. A. Sokolova³ **Affiliation:**

Ufa State Aviation Technical University (UGATU), Russia.

Email: ¹zhitnik@mail.ru, ²n_sher@mail.ru, ³alexandrakrasich@gmail.com

Language: Russian.

- Source: Vestnik UGATU (scientific journal of Ufa State Aviation Technical University), vol. 23, no. 4 (86), pp. 147-153, 2019. ISSN 2225-2789 (Online), ISSN 1992-6502 (Print).
- **Abstract:** Process of electrochemical machining is modeled by means of the solution of a problem for definition of analytical function on parametrical area in the form of a circle. Unlike a plane problem for determination of electric field strength integral transformations of analytical function are used. On this basis the numerical-analytical method of the solution of a problem which allowed to use nonmonotonic dependence of current density on anode potential for modeling is developed. Distributions of potential and components of current density on the anode are received.
- **Key words:** electrochemical machining; axisymmetric problem; anode potential; nonmonotonic dependence; complex variables; integral transformations.

About authors:

- ZHITNIKOV, Vladimir Pavlovich, Prof., Dept. of computer science and robotics. Dipl. Engineer-physicist (Moscow Physical-Technical Inst., 1973). Cand. of Phys.-Math. Sci. (MIPT, 1984), Dr. of Phys.-Math. Sci. (KSU, 1993).
- SHERYKHALINA, Nataliya Mikhailovna, Prof., Dept. of computer science and robotics. Dipl. Engineer-system master (UGATU, 1993). Cand. of Phys.-Math. Sci. (BGU, 1996), Dr. of Tech. Sci. (UGATU, 2012).
- **SOKOLOVA, Alexandra Alekseevna,** postgraduate student. master's degree (UGATU, 2014). Dept. of computer science and robotics.