-Вестник УГАМУ-——

УДК 621.452

К ВОПРОСУ О РАСПРОСТРАНЕНИИ АЭРОДИНАМИЧЕСКОГО СЛЕДА В ИНТЕГРИРОВАННОЙ СИСТЕМЕ ТУРБИНЫ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ

А. Е. РЕМИЗОВ¹, О. О. КАРЕЛИН²

¹ad@rsatu.ru, ²universityengine@mail.ru

ФГБОУ ВО «Рыбинский государственный авиационный технический университет им. П. А. Соловьева» (РГАТУ)

Поступила в редакцию 25.02.2019

Аннотация. Представлены результаты экспериментального исследования распространения аэродинамического следа в интегрированной системе турбины газотурбинного двигателя. Источником аэродинамического следа являлось колесо-имитатор, установленное на входе модельного переходного канала, диффузорность которого варьировалась в диапазоне 1...2,2. Получены профили скорости в аэродинамическом следе для различных областей течения. По результатам исследования получена зависимость между диффузорностью модельного переходного канала и относительной длиной канала, соответствующей затуханию аэродинамического следа.

Ключевые слова: газотурбинный двигатель; интегрированная система турбины; колесо-имитатор; аэродинамический след; профили скорости потока.

введение

Турбина современного ГТД представляет собой интегрированную систему, элементы которой находятся во взаимном влиянии [1]. Так, турбина высокого давления является источником неравномерности потока и аэродинамических следов в переходном канале, который в свою очередь влияет на поле кинематических параметров во входном сечении турбины низкого давления. Исследование аэродинамических следов в системе «турбина высокого давления - переходный канал» представляет теоретический интерес и имеет практическое значение. Например, известно о противоречивом влиянии аэродинамических следов на эффективность диффузора, режим течения в котоможет сохраняться безотрывным ром (предотрывным) благодаря интенсификации турбулентности, или наоборот стать отрывным [2].

Исследования А. Klein, S. Stevens, J. Preston [3, 4] являются единичными и относятся в основном к диффузорам камер сгорания с аэродинамическими следами от

направляющих лопаток компрессора. Такие диффузоры отличаются короткой безотрывной частью и симметричной формой. Переходные каналы турбин имеют наклонную форму с прямыми или криволинейными стенками, а режимы течения в них могут быть различными [1]. Поэтому вопрос о распространении аэродинамических следов в системе переходного канала турбины остается открытым и вызывает необходимость систематических исследований. Этому вопросу посвящена настоящая работа.

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ

Исследование относится к интегрированной системе турбины с модельным переходным каналом, диффузорность которого варьировалась в диапазоне 1...2,2. Источником аэродинамического следа являлись стержни колеса-имитатора (рис. 1), установленного на входе модельного переходного канала.

Опыт успешного применения такого колеса-имитатора отражен в работе О. Sieker, J. Seume при исследовании аэродинамиче-

x

ских характеристик системы «турбина – выхлопной патрубок» [2].

Рис. 1. Экспериментальная модель с колесом-имитатором (переходный канал снят)

Экспериментальная модель включала кольцевой канал с колесом-имитатором, модельный канал, диффузорность которого менялась за счет наклона внутренней стенки. Геометрические параметры модельного канала и колеса-имитатора соответствовали таковым для модельных и натурных турбин (табл. 1, 2) [1, 6]. Колесо-имитатор в данном эксперименте оставалось неподвижным для исследования распространения аэродинамического следа, когда течение установившееся [5].

m		~					1
	а	n	Π	ТÆ	TT	2	- 1
1	a	υ	71	¥1	ц	a	_ 1

Геометрические параметры модельного канала

Диффузорность q	1	1,6	2,2
Эквивалентный угол рас-	-0,2	6,4	12,7
крытия ү _{экв} , град.			
Длина канала, отнесенная	5,4	5,4	5,4
к высоте входного сече-			
ния L/h_1			

Таблица 2

Геометрические параметры колеса-имитатора

Количество стержней z	16				
Средний диаметр колеса, отнесенный	3				
к длине стержня D_{cp}/l					
Средний диаметр колеса, отнесенный	16,5				
к шагу стержней D_{cp}/t					

Число Рейнольдса, рассчитанное по гидравлическому диаметру, в эксперименте составляло $Re=10^5$.

Программа эксперимента включала измерение профилей осевой скорости в аэродинамическом следе от стержня неподвижного колеса-имитатора в контрольных сечениях (табл. 3) модельного канала и свободном потоке при снятом модельном канале.

Таблица 3

Контрольные сечения								
/L	0,14	0,28	0,42	0,56	0,7			

Измерение осевой скорости в контрольных сечениях модельного канала осуществлялось пневмометрическим методом с использованием одноточечного насадка полного давления (зонда), вводимого через отверстие приемника статического давления в стенке (рис. 2).

Рис. 2. Измерение скорости потока в сечениях модельного переходного канала

Осевая скорость потока в контрольном сечении модельного канала

$$c_a = \sqrt{\frac{2\left(P^* - P\right)}{\rho}},$$

где *P**, *P* – соответственно полное и статическое давление в сечении; р – плотность воздуха.

Измерение осевой скорости осуществлялось в окружном направлении y/t(через 2,5°) на радиусах $R_{\text{отн}}=0,1, 0,5$ и 0,9, что соответствовало различным областям течения. Систематическая погрешность измерения скорости потока составляла $\delta c=\pm 4 \%$ [1].

Измерение скорости в свободном потоке осуществлялось при снятом модельном канале в соответствующих контрольных сечениях (табл. 3).

Профиль осевой скорости в следе характеризовался отношением [3]

$$\frac{C_a}{C_{a\max}},$$

где c_a – локальная осевая скорость; c_{amax} – скорость на краю следа (рис. 3).

Затухание аэродинамического следа характеризовалось отношением [3]

$$1-\frac{c_{a\min}}{c_{a\max}}$$

где c_{amin} – скорость в центре следа (рис. 3).

Рис. 3. Профиль осевой скорости в аэродинамическом следе [4]

Такой аэродинамический след можно видеть на картине течения М. Van-Dyke [7], полученной для цилиндра в турбулентном потоке при Re=10⁴ (рис. 4).

Рис. 4. Аэродинамический след при обтекании цилиндра (Re=10⁴) [7]

На рис. 5 представлены полученные профили скорости в аэродинамическом следе от стержня в свободном потоке, а на рис. 6 – затухание следа. Из рис. 5 видно, что интенсивность аэродинамического следа в области основного течения $(R_{\text{отн}}=0,5)$ наибольшая, а в области периферии (*R*_{отн}=0,9) – наименьшая. Непосредственно за стержнем (x/L=0.04) ширина следа составляет около 40 % шага стержней. Отношение ширины следа к диаметру стержня составляет 2,2, что соответствует картине течения М. Van-Dyke (рис. 4). Из рис. 6 видно, что затухание следа в свободном потоке соответствует длине x/L=0,42. Различие в интенсивности следов для областей течения, по всей видимости, связано с радиальной неравномерностью потока в кольцевом канале модели.

Рис. 5. Профили скорости в следе от стержня в свободном потоке: $\langle x/L=0,04; \bigcirc x/L=0,14;$ $\bigtriangleup x/L=0,28; \Box x/L=0,42; a - R_{\text{отн}}=0,1; \delta - R_{\text{отн}}=0,5;$ $e - R_{\text{отн}}=0,9$

Рис. 6. Затухание следа в свободном потоке

На рис. 7, 8 представлены данные по модельному каналу q=2,2.

Рис. 7. Профили скорости в следе от стержня в канале *q*=2,2: ○ *x*/*L*=0,14; △ *x*/*L*=0,28; □ *x*/*L*=0,42; • *x*/*L*=0,56; ▲ *x*/*L*=0,7; *a* − *R*_{отн}=0,1; *б*−*R*_{отн}=0,5; *в* − *R*_{отн}=0,9

в

На рис. 7 представлены профили скорости в аэродинамическом следе от стержня в модельном канале q=2,2, а на рис. 8 – затухание следа. Из рис. 7 видно, что в модельном канале q=2,2 аэродинамический след более интенсивный по сравнению со свободным течением (рис. 5). Так, в области основного течения ($R_{\text{отн}}=0,5$) глубина следа в сечении x/L=0,14 составляет около 55 % в диффузоре и 20 % в свободном потоке.

Рис. 8. Затухание следа в канале *q*=2,2

Из рис. 8 видно, что затухание следа в модельном канале q=2,2 соответствует большей длине *x/L*=0,7. Полученные данные находятся в соответствии с предположением А. Klein [3] о связи интенсивности следов с осевым градиентом давления: если в диффузоре осевой градиент давления достаточно велик, то следы могут увеличиваться. Из рис. 8 видно, что интенсивность аэродинамического следа в области наружной стенки (*R*_{отн}=0,9) выше, чем в области внутренней (*R*_{отн}=0,1). Согласно [3] это может быть связано с искривлением течения, приводящим к увеличению градиента давления в области наружной стенки диффузора.

Полученные данные по модельным каналам q=1,6 (рис. 9, 10) и q=1 (рис. 11, 12) дополняют картину о распространении аэродинамического следа в каналах различной диффузорности. Затухание следа в модельном канале q=1,6 соответствует длине x/L=0,56. Сравнение данных по модельному каналу q=1 и свободному потоку показало сходство профилей скорости в следе в сечениях *x/L*=0,14, 0,28 и 0,42. Затухание следа в обоих случаях соответствует длине *x/L*=0,42. Поскольку осевой градиент давления определяется диффузорностью канала [1], то характер распространения следа в канале q=1 в большей степени соответствует свободному потоку. Увеличение осевого градиента давления с ростом диффузорности канала приводит к интенсификации аэродинамического следа, затухание которого наблюдается дальше по потоку.

Рис. 9. Профили скорости в следе от стержня в канале q=1,6: $\bigcirc x/L=0,14$; $\triangle x/L=0,28$; $\square x/L=0,42$; • x/L=0,56; $a - R_{\text{отн}}=0,1$; $\delta - R_{\text{отн}}=0,5$; $s - R_{\text{отн}}=0,9$

Рис. 10. Затухание следа в канале *q*=1,6

Рис. 11. Профили скорости в следе от стержня в канале $q=1: \bigcirc x/L=0,14; \bigtriangleup x/L=0,28; \Box x/L=0,42;$ $a - R_{\text{отн}}=0,1; \ \delta - R_{\text{отн}}=0,5; \ s - R_{\text{отн}}=0,9$

Рис. 12. Затухание следа в канале *q*=1

Полученные данные по распространению аэродинамического следа от колесаимитатора в модельном переходном канале q=1...2,2 хорошо согласуются с экспериментом A. Klein, P. Pucher, M. Rohifis [3] (рис. 13). Связь между диффузорностью переходного канала и относительной длиной, соответствующей затуханию следа, можно выразить уравнением линейной регрессии

$$x/L = 0.29 \cdot q + 0.1$$

с достоверностью аппроксимации $R^2=0.88$.

Рис. 13. Затухание аэродинамического следа по длине модельного канала в зависимости от диффузорности: ● *данные авторов;* $\triangle u \square$ экспериментальные *данные A. Klein, P. Pucher, M. Rohifis* [3]

ЗАКЛЮЧЕНИЕ

По результатам проведенного исследования можно сделать следующие выводы.

1. Распространение аэродинамического следа в модельном канале при отсутствии осевого градиента давления соответствует свободному потоку.

2. Увеличение диффузорности модельного канала в диапазоне 1...2,2 приводит к интенсификации аэродинамического следа, затухание которого наблюдается дальше по потоку на расстоянии соответственно 40...70 % длины канала.

3. Получена зависимость между диффузорностью модельного канала и относительной длиной, соответствующей затуханию аэродинамического следа.

4. Различия в интенсивности аэродинамических следов в пристеночных областях модельного канала могут быть связаны с искривлением течения.

СПИСОК ЛИТЕРАТУРЫ

1. Ремизов А. Е., Кривошеев И. А., Карелин О. О. Геометрические и аэродинамические характеристики межкаскадных переходных каналов авиационных ТРДД и энергетических ГТУ. М.: Машиностроение, 2012. 271 с. [А. Е. Remizov, I. A. Krivosheev and O. O. Karelin, *Geometric* and aerodynamic characteristics of interstage transition channels of aviation GTE and energy GTU, (in Russian). Moscow: Mashinostroenie, 2012.]

2. **Sieker O., Seume J.** Influence of rotating wakes on separation in turbine exhaust diffusers // Proc. of Eighth International Symposium of Experimental and Computational Aerothermodynamics of Internal Flows, (Lyon, 2007). P. 1–9. [O. Sieker and J. Seume, "Influence of rotating wakes on separation in turbine exhaust diffusers," in *Proc. of Eighth International Symposium of Experimental and Computational Aerothermodynamics of Internal Flows*, 2007, pp. 1–9.]

3. Klein A., Pucher P., Rohifis M. The effect of bladewakes on the performance of short dump-diffuser type combustor inlets // ASME Journal of Fluids Engineering. 1980. Vol. 102, № 2. Pp. 236–242. [A. Klein, P. Pucher, and M. Rohifis, "The effect of blade-wakes on the performance of short dump-diffuser type combustor inlets," in *ASME Journal of Fluids Engineering*, vol. 102, no. 2, pp. 236-242, 1980.]

4. Stevens S., Nayak U., Preston J. The influence of compressor exit conditions on the performance of combustordump diffusers // Journal of Aircraft. 1978. Vol. 15, № 8. Pp. 482–488. [S. Stevens, U. Nayak and J. Preston, "The influence of compressor exit conditions on the performance of combustor-dump diffusers," in *Journal of Aircraft*, vol. 15, no. 8, pp. 482-488, 1978.]

5. Карелин О. О., Ремизов А. Е. Экспериментальное исследование газодинамической эффективности переходного канала турбины при наличии аэродинамического следа от турбины высокого давления, моделируемого с помощью колеса-имитатора // 17-я Международная конференция «Авиация и космонавтика – 2018». Москва: Люксор, 2018. С. 82–83. [О. О. Karelin, А. Е. Remizov, "Experimental study of the gas-dynamic efficiency of the turbine transition channel in the presence of an aerodynamic wake from a highpressure turbine simulated using a spoke-wheel,"(in Russian), in *Proc.* 17^{th} Aerospace Week "Aviation and Astronautics-2018", Moscow, 2018, pp. 82-83.]

6. Гоголев И. Г., Дроконов А. М. Аэродинамические характеристики ступеней и патрубков тепловых турбин. Брянск: Грани, 1995. 258 с. [I. G. Gogolev, A. M. Drokonov, Aerodynamic characteristics of the stages and ducts of thermal turbines, (in Russian). Bryansk: Grani, 1995.]

7. Ван-Дайк М. Альбом течений жидкости и газа. М.: Мир, 1986. 184 с. [М. Van-Dyke, Album Fluid Motion, (in Russian). Moscow: Mir, 1986.]

ОБ АВТОРАХ

РЕМИЗОВ Александр Евгеньевич, д-р техн. наук, проф., заведующий кафедрой «Авиационные двигатели» ФГБОУ ВО «Рыбинский государственный авиационный технический университет имени П. А. Соловьева» (РГАТУ). Иссл. в обл. аэродинамики лопаточных машин газотурбинных двигателей. КАРЕЛИН Олег Олегович, канд. техн. наук, доц. каф. «Авиационные двигатели» ФГБОУ ВО «Рыбинский государственный авиационный технический университет имени П. А. Соловьева» (РГАТУ). Иссл. в обл. аэродинамики лопаточных машин газотурбинных двигателей.

METADATA

Title: To the question about the distribution of the aerodynamic wakes in the integrated turbine system of gas turbine engine.

Authors: A. E. Remizov¹, O. O. Karelin²

Affiliation:

P. A. Solovyov Rybinsk State Aviation Technical University (RSATU), Russia.

Email: ¹ad@rsatu.ru, ²universityengine@mail.ru

Language: Russian.

- Source: Vestnik UGATU (scientific journal of Ufa State Aviation Technical University), vol. 23, no. 3 (85), pp. 96-102, 2019. ISSN 2225-2789 (Online), ISSN 1992-6502 (Print).
- **Abstract:** The article presents the results of an experimental study of the distribution of an aerodynamic wake in an integrated turbine system of a gas turbine engine. The source of the aerodynamic wake was a spoke-wheel installed at the input of the model interturbine duct, the area ratio of which varied in the range of 1 ... 2.2. The velocity profiles in the aerodynamic wake are obtained for different flow regions. According to the results of the study, a relationship was obtained between the area ratio of the model interturbine duct and the relative length of the duct corresponding to the decrement of the aerodynamic wake.
- **Key words:** gas turbine engine; integrated turbine system; spoke-wheel; aerodynamic wake; flow velocity profiles.

About authors:

- **REMIZOV, Alexander Evgenievich**, Dr. of Tech. Sci. (2014). Prof. Dipl. thermal, electrorocket engines and power plants of aircraft (2016). Dept. head of Aviation engines P. A. Solovyov Rybinsk State Aviation Technical University (RSATU).
- KARELIN, Oleg Olegovich, Cand. of Tech. Sci. Assistant prof. Dept. of Aviation engines P. A. Solovyov Rybinsk State Aviation Technical University (RSATU).