ISSN 1992-6502 (Print) 2016. T. 20, № 3 (73). C. 12–18

Вестник УГАМУ

ISSN 2225-2789 (Online) http://journal.ugatu.ac.ru

УДК 539.3:669.295

Напряженно-деформированное состояние соединения с натягом при чистом сдвиге и двухосном растяжении с учетом технологических напряжений

В. С. Жернаков¹, Т. Н. Мардимасова², В. Р. Акбашев³, К. В. Конева⁴

¹ zhvs@mail.rb.ru, ² toma_mard@mail.ru, ³ vadja92@mail.ru, ⁴ ksyu.koneva.95@mail.ru

ФГБОУ ВО «Уфимский государственный авиационный технический университет» (УГАТУ)

Поступила в редакцию 15.06.2016

Аннотация. Выполнен численный расчет напряженно-деформированного состояния соединения с натягом «пластина-кольцо», выполненного из наноструктурного и чистого титанового сплава ВТ6. Получены поля рас-пределения напряжений в условии чистого сдвига и двухосного растяжения с учетом технологических напря-жений. Исследовано влияние радиуса кольца и толщины конструкции на характер распределения напряжений.

Ключевые слова: посадка с натягом; технологические напряжения; наноструктурный титановый сплав ВТ6.

Соединение с натягом получают путем механической запрессовки с помощью нагрева охватывающей или охлаждения охватываемой детали, а также путем гидрораспора. Эти высоконадежные соединения позволяют передавать значительные осевые силы и крутящие моменты [1].

кольцо (в), одноосное растяжение соединения (г)

В данной работе рассмотрены задачи математического моделирования получения соединения с натягом «пластина–кольцо» и последующего осевого нагружения (рис. 1), а также исследования полученного напряженно-деформированного состояния.

Исследованы пластины, ослабленные отверстием диаметром $d_{nn}= 14-30$ мм, с запрессованными в них кольцами толщиной t=2-10 мм; d=10 мм – внутренний диаметр кольца; s=5-15 мм – высота кольца и пластины. Материал пластины – обычный титановый сплав *BT6* (предел текучести $\sigma_T^{nn}=830$ МПа, коэффициент линейного расширения $\alpha_T=8,6*10^{-6}$ °C⁻¹), а кольца – наноструктурный сплав *BT6* с пределом текучести $\sigma_T^{кол}=1250$ МПа. В силу геометрической и силовой симметрии относительно осей X и Y в качестве расчетной схемы соединения была принята ¹/₄ часть (рис. 2).

Численное моделирование технологического процесса соединения с натягом рассмотрено в виде двух этапов.

На первом этапе происходил нагрев пластины, обеспечивающий зазор размером *е* между пластиной и кольцом, достаточный для дальнейшей посадки кольца в отверстие пластины.

Сплошными линиями на рис. 2, *а* показан исходный контур ¹/₄ части пластины до нагрева, а штриховыми – после нагрева.

На втором этапе процесса выполнялась установка кольца в отверстие пластины диаметром $d^*_{nn} = d_{nn} + 2e$, причем $d_{\kappa} < d^*_{nn}$ (рис. 1, *в*), и охлаждение пластины на величину ΔT .

При охлаждении возникало контактное давление p_k между пластиной и кольцом (рис. 2, δ)

и формировалось соединение (рис. 1, *a*), что и приводило к возникновению напряженнодеформированного состояния в деталях.

Рис. 2. Схема технологического получения соединения: *а* – нагрев пластины; *б* – охлаждение пластины и образование соединения

Численное решение задачи выполнено методом конечных элементов [3] в трехмерной постановке с применением программновычислительного комплекса ANSYS 14.5.

Величина зазора *е* зависит от допуска на размер внешнего диаметра кольца d_{κ} (посадка с гарантированным натягом H7/*p*7) [2]. В связи с этим определена оптимальная величина нагрева ΔT для посадочного диаметра d_{κ} . Была получена зависимость величины нагрева ΔT от отношения t/d_{κ} .

В результате исследования получены поля распределения технологических напряжений и деформаций при получении соединения. В качестве примера, на рис. 4 приведены эпюры распределения осевых σ^{nn}_{y} , σ^{nn}_{x} , σ^{κ}_{y} , σ^{κ}_{x} и контурных σ^{nn}_{Θ} , σ^{κ}_{Θ} напряжений по осям X и Y в пластине и кольце соответственно, возникающих при запрессовке кольца толщиной t = 6,018 мм [2] и высоте s = 5 мм.

б Рис. 4. Поля распределения технологических напряжений при натяге: $a - осевых \sigma_x, \sigma_y;$ $\delta - контурных \sigma_{\theta}$

На рис. 4, *а* видно, что по толщине соединения распределение осевых напряжений неравномерно, причем, в кольце возникают сжимающие, а в пластине – растягивающие напряжения. Максимальные напряжения σ_{ymax}^{κ} в кольце наблюдаются на внутренней свободной поверхности и достигают значения 161 МПа. При этом минимальные сжимающие напряжения σ_{ymin}^{κ} в кольце равны 95 МПа и возникают в зоне контакта кольца с пластиной. Максимальные растягивающие напряжения $\sigma_{ymax}^{nn} = 79$ МПа возникают в зоне контакта. По мере удаления от поверхности контакта вглубь пластины, значение растягивающих напряжений снижается практически до 0 МПа.

На рис. 4, δ приведена картина распределения контурных σ_{θ} напряжений [4] в соединении. В кольце возникают сжимающие напряжения, а в пластине – растягивающие. Причем распределение этих напряжений равномерно по контуру деталей. Наиболее напряженным местом является свободная внутренняя поверхность охватываемой детали [1] и максимальные напряжения сжатия $\sigma_{\mathbb{Z}max}^{\kappa} = 161$ МПа. В зоне контакта растягивающие напряжения в пластине $\sigma_{\theta}^{\Pi n} = 79$ МПа, сжимающие напряжения $\sigma_{\theta min}^{\pi n} = 95$ МПа.

Рис. 5. Зависимость относительных осевых напряжений при натяге от параметров соединения t/d_{κ} при толщине соединения s = 5 мм

В результате исследований были получены зависимости относительного напряжения в пла-

стине $\sigma_{ymin}^{n_y}/\sigma_T^{n_T}$ (рис. 5, *a*) и кольце $\sigma_{ymin}^{\kappa}/\sigma_T^{\kappa}$ (рис. 5, *b*), $\sigma_{ymax}^{\kappa}/\sigma_T^{\kappa}$ (рис. 5, *b*) от отношения толщины кольца *t* к внешнему диаметру кольца d_{κ} .

Установлено, что относительные напряжения $\sigma^{n_{n_y}}/\sigma^{n_n}$ достигают своего максимума при t/d_{κ} равным 0,27 и принимают значение 10,5 % (рис. 5, *a*). При дальнейшем увеличении толщины кольца *t* значение относительных напряжений снижается до 9,4 %. С увеличением толщины кольца относительные напряжения $\sigma^{\kappa}_{ymin}/\sigma^{\kappa}_{T}$ и $\sigma^{\kappa}_{ymax}/\sigma^{\kappa}_{T}$ снижаются с 15,7 % до 5,1 % и с 21 % до 9,8 % соответственно (рис. 5, *б*, *в*).

В табл. 1–3 представлены результаты расчета относительных напряжений при разных величинах высоты соединения *s*.

			Таблица	
Относительные напряжения $\sigma^{n_1} \sqrt{\sigma^{n_3}} r$, %				
t/d_{κ}	Высота соединения <i>s</i> , мм			
	5	10	15	
0,15	8,6	8,4	8,3	
0,27	10,5	10,7	11,0	
0,35	9,4	9,5	9,5	

Таблица 2

Относительные напряжения $\sigma_{ymin}^{\kappa}/\sigma_{T}^{\kappa}$, %			
t/d_{κ}	Высота соединения <i>s</i> , мм		
	5	10	15
0,15	15,7	15,6	15,4
0,27	8,3	8,8	8,6
0,35	5,1	5,0	5,0

Таблица З

Относительные напряжения $\sigma^{\kappa}_{ymax}/\sigma^{\kappa}_{T}$, %				
t/d_{κ}	Высота соединения <i>s</i> , мм			
	5	10	15	
0,15	21,0	20,8	20,6	
0,27	15,2	14,9	14,6	
0,35	9,8	9,8	9,7	

Следует отметить, что характер относительных напряжений не меняется при изменении высоты соединения *s*.

На рис. 6 изображена зависимость контактного давления p_k от геометрических параметров. При изменении t/d_k от 0,15 до 0,27 величина давления p_k растет. Выявлено, что максимальное значение контактного давления $p_k = 74$ МПа достигает при отношении t/d_k равном 0,27 и s = 5 мм. Дальнейшее увеличение толщины кольца приводит к снижению контактного давления p_k до 55 МПа. При увеличении высоты соединения *s* от 5 мм до 15 мм значение давления изменяется незначительно. Например, при отношении $t/d_k = 0,27$ контактное давление снижается с 74 МПа до 71 МПа.

Выявлено, что в зависимости от геометрических характеристик, соединение способно выдержать критическое значение приложенной нагрузки $\sigma_{0=\sigma_{\kappa p}}$. При превышении значения $\sigma_{\kappa p}$ происходит нарушение контакта в точке *1* (рис. 7).

Рис. 7. Расчетная схема соединения при чистом сдвиге

В результате исследования получена зависимость критического напряжения $\sigma_{\kappa p}$ от геометрических характеристик соединения. На рис. 8 видно, что при изменении высоты соединения уровень максимальной нагрузки $\sigma_{\kappa p}$ снижается незначительно. Однако при изменении отношения t/d_{κ} от 0,15 до 0,35 предельная нагрузка снижается на 30%.

15

Рис. 9. Распределение полей напряжений в соединении при чистом сдвиге

На внутренней поверхности кольца формируются растягивающие σ_y и сжимающие напряжения σ_x , максимум которых равен 200 МПа и 473 МПа соответственно (рис. 9). На внешней поверхности кольца возникают сжимающие σ_y и растягивающие σ_x , максимальные значения которых достигают 264 МПа и 43 МПа. В пластине формируются растягивающие напряжения $\sigma_y = 295$ МПа и сжимающие $\sigma_x = 187$ МПа.

В результате исследований были получены зависимости относительного напряжения на внутренней поверхности кольца $\sigma^{\kappa_{y}}_{\ BH}/\sigma^{\kappa_{T}}$, внешней поверхности кольца $\sigma^{\kappa_{y}}_{\ BH}/\sigma^{\kappa_{T}}$, внешней поверхности кольца $\sigma^{\kappa_{y}}_{\ BH}/\sigma^{\kappa_{T}}$, $\sigma^{\kappa_{x}}_{\ BH}/\sigma^{\kappa_{T}}$, в в пластине $\sigma^{nn_{y}}/\sigma^{nn_{T}}$, $\sigma^{nn_{x}}/\sigma^{nn_{T}}$ от отношения толщины кольца *t* к внешнему диаметру кольца d_{κ} . Отрицательные значения относительных напряжений означают наличие сжимающих напряжений.

В табл. 4–6 представлены результаты расчета относительных напряжений при разных величинах высоты соединения *s*.

Относительные напряжения $\sigma_{y \text{вн}}^{\kappa} \sigma_{T}^{\kappa}$, %				
t/d_{κ}	Высота соединения <i>s</i> , мм			
	5	10	15	
0,15	-4,2	-3,8	-6,3	
0,27	16,4	16,0	10,2	
0,35	19,0	18,9	16,0	

Габлица 5	
-----------	--

Таблица 4

Относительные напряжения O_{ymin}/O_T , %				
t/d_{κ}	Высота соединения <i>s</i> , мм			
	5	10	15	
0,15	-24,5	-24,2	-24,0	
0,27	-21,6	-21,3	-20,5	
0,35	-16,4	-15,2	-15,0	

Таблица 6

Относительные напряжения $\sigma^{n_{\pi}} \sigma^{n_{\pi}}$, %				
t/d_{κ}	Высота соединения <i>s</i> , мм			
	5	10	15	
0,15	41,6	40,5	39,8	
0,27	38,0	37,3	34,9	
0,35	31,3	29,2	28,7	

Следует отметить, что характер относительных напряжений не меняется при изменении высоты соединения *s*.

На рисунке 10 изображен график зависимости коэффициента концентрации напряжения $\alpha_{\sigma} = \sigma_{max}/\sigma_0$ от отношения t/d_{κ} при высоте соединения *s* равной 5 мм (*кривая 1*), 10 мм (*кривая* 2), 15 мм (*кривая 3*).

При увеличении отношения t/d_{κ} от 0,15 до 0,35 значение коэффициента концентрации напряжения α_{σ} увеличивается.

Так, например, при высоте соединения s=10 мм наблюдается наиболее интенсивный рост коэффициента концентрации и значения изменяются с 5,8 до 6,0.

Рассмотрена задача двухосного растяжения соединения напряжениями $\sigma_y = 2\sigma_x$, что соответствует напряженному состоянию стенок сосудов.

В результате исследования получена зависимость критического напряжения σ_{кр} от геометрических параметров соединения.

Из рис. 11 можно установить, что при изменении высоты соединения *s* с 5 до 15 мм уровень максимальной нагрузки окр увеличивается на 16,7 %. При изменении отношения t/d_{κ} от 0,15 до 0,35 наблюдается снижение критической нагрузки $\sigma_{\kappa p}$. Так, например, в соединении с высотой *s* = 10 мм происходит наиболее интенсивный спад величины $\sigma_{\kappa p}$ – практически на 63%.

Рис. 12. Распределение полей осевых напряжений при двухосном растяжении

На внутренней поверхности кольца формируются растягивающие σ_y и сжимающие напряжения σ_x , максимум которых равен 117 МПа и 165 МПа соответственно (рис. 12). На внешней поверхности кольца возникают сжимающие σ_y и растягивающие σ_x , максимальные значения которых достигают 90 МПа и 41 МПа. В пластине формируются растягивающие напряжения $\sigma_y = 268$ МПа и $\sigma_x = 106$ МПа.

В результате исследований были получены зависимости относительного напряжения на внутренней поверхности кольца $\sigma^{\kappa}_{y \ BH}/\sigma^{\kappa}_{T}$, $\sigma^{\kappa}_{x \ BH}/\sigma^{\kappa}_{T}$, внешней поверхности кольца $\sigma^{\kappa}_{y \ BHEIII}/\sigma^{\kappa}_{T}$, внешней поверхности кольца $\sigma^{\kappa}_{y \ BHEIII}/\sigma^{\kappa}_{T}$, $\sigma^{\kappa}_{x \ BHEIII}/\sigma^{\kappa}_{T}$ и в пластине $\sigma^{nn}_{y}/\sigma^{nn}_{T}$, $\sigma^{nn}_{x}/\sigma^{nn}_{T}$) от отношения толщины кольца *t* к внешнему диаметру кольца d_{κ} .

В табл. 7–9 представлены результаты расчета относительных напряжений при разных величинах высоты соединения *s*.

			Таблица 7
Отно	осительные на	пряжения $\sigma^{\kappa}{}_{y \ в r}$	$\pi/\sigma^{\kappa}{}_{T}$, %
t/d_{κ}	Высота соединения <i>s</i> , мм		
	5	10	15
0,15	3,0	4,8	5,4
0,27	9,4	7,1	10,2
0,35	11,4	9,8	11,7

 Таблица 8

 Относительные напряжения $\sigma^{\kappa}_{ymin}/\sigma^{\kappa}_{T}$, %

 t/d_{κ} Высота соединения s, мм

 5
 10
 15

 0,15
 -8,5
 -8,0
 -8,9

 0,27
 -7,2
 -7,2
 -8,2

-5,0

0,35

-5.0

Таблица	9
---------	---

-5,0

Относительные напряжения $\sigma^{n_1} \sqrt{\sigma^{n_1}}$, %				
t/d_{κ}	Высота соединения <i>s</i> , мм			
	5	10	15	
0,15	41,4	44,3	49,4	
0,27	32,3	31,9	36,1	
0,35	23,6	20,7	23,6	

Установлено, что при увеличении отношения t/d_{κ} значения относительных напряжений в кольце снижаются. Отмечено, что варьирование высоты соединения не влияет на характер распределения относительных напряжений.

Рис. 13. Коэффициент концентрации напряжений в пластине при двухосном растяжении: *1* – *s*=5 *мм*; *2* – *s*=10 *мм*; *3* – *s*=15 *мм*

На рис. 13 изображен график зависимости коэффициента концентрации напряжения $\alpha_{\sigma=\sigma_{max}/\sigma_{\kappa p}}$ от отношения t/d_{κ} при высоте соединения *s* равной 5 мм (*кривая 1*), 10 мм (*кривая 2*), 15 мм (*кривая 3*).

При увеличении отношения t/d_{κ} от 0,15 до 0,35 значение коэффициента концентрации напряжения α_{σ} увеличивается. Так, например, при высоте соединения s=5 мм наблюдается наиболее интенсивный рост коэффициента концентрации и значения изменяются с 2,7 до 3,5.

выводы

• Получена зависимость оптимальной величины нагрева ΔT . Установлено, что величина нагрева снижается при увеличении отношения t/d_{κ} ;

• Выявлено, что наиболее напряженным местом является внутренняя свободная поверхность кольца;

• Установлено, что при увеличении отношения t/d_{κ} значения относительных напряжений в кольце снижаются. В пластине относительные напряжения растут при $t/d_{\kappa} = 0,15-0,27$ от 8,6% до 10,5%, после чего наблюдается снижение. Отмечено, что варьирование высоты соедине-ния не влияет на характер распределения отно-сительных напряжений;

• Определено, что величина контактного давления увеличивается до $p_k = 74$ МПа при $t/d_{\kappa} = 0,27$. Дальнейшее увеличение отношения приводит к значительному снижению контактного давления;

• Получена зависимость критического напряжения $\sigma_{\kappa p}$ от геометрических характеристик соединения. Выявлено, что с увеличением отношения t/d_{κ} происходит снижение критического напряжения до 60 %.

17

СПИСОК ЛИТЕРАТУРЫ

1. Безухов, Н. И. Теория упругости и пластичности. Л.: Союзполиграфпром, 1953. 420 с. [N. I. Bezuhov. The theory of elasticity and plasticity. (in Russian). Leningrad.:Soyuzpoligrafprom. 1953.]

2. Берендеев, Н. Н. Применение системы Ansys к оценке усталостной долговечности. Учебно-методический материал по программе повышения квалификации «Новые подходы в исследованиях и разработках информационно - телекоммуникационных систем и технологий». Нижний Новгород, 2006. 83 с. [N. N. Berendeev. Application of Ansys system for assessment of the fatigue life. Educational - methodical material for the training program "New approaches in research and development of information - telecommunication systems and technologies". (in Russian). Nizhny Novgorod. 2006.]

3. Зайдес, С. А. Технологическая механика осесимметричного деформирования. Иркутск, 2007. 432 с. [S. A. Zaides. Technological mechanics of axisymmetric deformation. (in Russian).Irkutsk.2007.]

4. Биргер, И. А. Прочность и надежность машиностроительных конструкций: Избранные труды. Уфа, 1998. 350 с.

[I.A. Birger. Durability and reliability of engineering structures: Selected Works. Ufa. 1998.]

5. Жернаков В. С., Мардимасова Т.Н., Арсланов М.Р. Влияние напряженно-деформированного состояния деталей из объемных наноматериалов на их усталостную прочность / /Вестник УГАТУ. Т. 15. № 4 (44). 2011. с. 90–94. [V. S. Zhernakov, T.N. Mardimasova, M. R. Arslanov." Effect of stress-strain state of parts of bulk nanomaterials on their fatigue strength" (in Russian), in *Vestnik UGATU*, vol. 15, no. 4 (44), pp. 90-94, 2011.]

ОБ АВТОРАХ

ЖЕРНАКОВ Владимир Сергеевич, зав. каф. сопротивления материалов, д-р техн. наук, проф., засл. деятель науки РФ. Чл.-корр. АН РБ. Автор 8 монографий, 2 учебников и 8 учебных пособий*, более 250 статей, 90 авторских свидетельств и патентов, им подготовлено 12 кандидатов и 8 докторов технических наук. Обл. науч. интересов – решение фундаментальных и прикладных задач теории упругости, пластичности, ползучести и механики разрушения применительно к основным элементам авиационных конструкций.

*с грифом Минобразования и УМО.

МАРДИМАСОВА Тамара Николаевна, канд. техн. наук, доцент. Автор 5 учебных пособий, свыше 100 публикаций, 4 авторских свидетельств и патентов. Обл. науч. интересов – решение задач механики процессов упруго-вязкого пластического деформирования конструкций.

АКБАШЕВ Вадим Ринатович, асп. каф. СМ, маг. техники и технологии (УГАТУ, 2015).

КОНЕВА Ксения Владимировна, магистрант каф. авиац. двигателей. Б-р техн. и технол. (УГАТУ, 2016).

METADATA

- **Title:** Investigation of stress–strain state interference fit in pure shear and biaxial tension considering technological stresses.
- Authors: Zhernakov V.S., Mardimasova T.N., Akbashev V.R.¹, Koneva K.V.

Email: 1 vadja92@mail.ru.

Language: Russian.

- Source: Vestnik UGATU (scientific journal of Ufa State Aviation Technical University), vol. 20, no. 3 (73), pp. 12-18, 2016. ISSN 2225-2789 (Online), ISSN 1992-6502 (Print).
- **Abstract:** The calculation of the stress-strain state of the connection with interference "plate-ring" made of nanostructured pure and titanium alloy VT6. Obtained stress field distribution in a condition of pure shear and biaxial tension, taking into account technological stress. The influence of the radius of the ring structure and the thickness on the stress distribution pattern.
- Key words: Interference fit; technological stresses; nanostructure titanium alloy VT6.

About authors:

- **ZHERNAKOV Vladimir Sergeyevich**, Head of the Department of Strength of Materials, Doctor of Technical Sciences, Professor, Honored Scientist of the Russian Federation. Corresponding Member of the Academy of Sciences of RB. Author of 8 monographs, 2 textbooks and teaching aids 8, more than 250 articles,90 patents, they trained 12 candidates and 8 doctors of technical sciences. Research interests – the solution of fundamental and applied problems, the theory of elasticity, plasticity, creeping and fracture mechanics as applied to the basic elements of aircraft structures.
- MARDIMASOVA Tamara Nikolaevna, candidate of Technical Sciences., associate professor. Author of 5 textbooks and over 100 Publications, 4 patents. Research interests – the solution of problems of mechanics processes viscoelastic plastic deformation structures.
- **AKBASHEV Vadim Rinatovich**, graduate student Department of Strength of Materials USATY. Master of Engineering and Technology (USATU 2015).
- KONEVA Kseniya Vladimirovna, undergraduate chair aviation engines, Bachelor of Engineering and Technology (USATU, 2016).