_Вестник УГАМУ -

УДК 669.295:539.4

УСТАЛОСТНАЯ ПРОЧНОСТЬ И ОСОБЕННОСТИ РАЗРУШЕНИЯ УЛЬТРАМЕЛКОЗЕРНИСТОГО ТИТАНОВОГО СПЛАВА **BT6**

Р. Р. Валиев¹, Ю. М. Модина², А. В. Поляков³, И. П. Семенова⁴, В. С. Жернаков⁵

¹ rovaliev@gmail.ru, ² modina_yulia@mail.ru, ³ alex-v.polyakov@mail.ru, ⁴ semenova-ip@mail.ru, ⁵ sm.ugatu@mail.ru

ФГБОУ ВО «Уфимский государственный авиационный технический университет» (УГАТУ)

Поступила в редакцию 27.04.2016

Аннотация. Данная работа посвящена изучению сопротивления многоцикловой усталости ультрамелкозернистого (УМЗ) сплава ВТ6, полученного равноканальным угловым прессованием в сочетании с последующей экструзией и отжигом. Усталостным испытаниям кручением с вращением в условиях симметричного цикла нагружения подвергались образцы из сплава ВТ6 с бимодальной (глобулярнопластинчатой) и УМЗ структурой. Показано, что предел выносливости УМЗ сплава был на 40% выше, чем усталостная прочность сплава с бимодальной структурой. Выявлены основные различия в поверхности разрушения образцов, обсуждается влияние УМЗ структуры на сопротивление материала зарождению и распространению усталостных трещин.

Ключевые слова: Титановый сплав; ультрамелкозернистая структура; многоцикловая усталость; предел выносливости; поверхность разрушения.

введение

Как известно, сопротивление усталости конструкционных титановых материалов является критически важным свойством для применения их в авиации и двигателестроении. Детали и конструкции, такие как лопатки и диски, испытывают сложные нагрузки, например высокую амплитуду напряжений и низкую частоту (малоцикловая усталость), а также высокочастотные вибрационные нагрузки обычно при достаточно высоких напряжениях (многоцикловая усталость) [1]. Титановый сплав ВТ6 (Ti-6Al-4V) широко применяется для изготовления лопаток и дисков газотурбинных двигателей (ГТД) [2], поэтому повышение его усталостных свойств в современных ГТД является актуальной задачей.

Существует известная корреляция предела выносливости и предела прочности на растяжение для разных материалов [1, 3]. Данная корреляция указывает, что наиболее прямой путь повышения усталостных свойств – это повышение прочности материала. Исследования последних лет свидетельствуют о повышении усталостных свойств металлов и сплавов путем формирования в них ультрамелкозернистой (УМЗ) структуры методами интенсивной пластической деформации (ИПД) [3, 4]. В большинстве случаев это связано, прежде всего, с увеличением статической прочности в результате значительного уменьшения размера зерен. При этом зависимость предела выносливости ($\sigma_{\rm R}$) от размера зерна часто выражают формулой, аналогичной зависимости Холла–Петча для предела текучести: $\sigma_{\rm R} = \sigma_{\rm iR} + K_{\rm R} d^{-1/2}$, где $\sigma_{\rm iR}$ и $K_{\rm R}$ – константы для данного материала. На примере технически чистого титана, полученного разными методами ИПД, данная закономерность вполне подтверждена [4–7].

Формирование субмикрокристаллической (СМК) структуры в двухфазном титановом сплаве Ti-6Al-4V методом многоступенчатой всесторонней ковки позволило повысить предел выносливости на 17% в условиях многоцикловых испытаний с коэффициентом ассиметрии цикла *R*=0 [8]. В работах [9, 10] было показано, что усталостная прочность медицинского сплава Ti-6Al-4V ELI может быть улучшена за счет формирования УМЗ структуры равноканальным угловым прессованием и последующей экструзией. В соответствии с классической диаграммой Велера, предел выносливости УМЗ сплава Ti-6Al-4V ELI увеличился примерно на 13%, а в малоцикловой области усталости – на 30% [9]. Таким образом, недавние исследования показали, что формирование УМЗ структуры методами ИПД в сплаве системы Ti-6Al-4V способствует повышению сопротивления усталости как в малоцикловой, так и в многоцикловой области нагружения, что является актуальным для инженерных применений сплава в высоконагруженных конструкциях.

Целью настоящего исследования было изучение усталостного поведения УМЗ сплава ВТ6 при комнатной температуре в условиях изгиба с вращением на базе 10⁷ циклов. В данной статье обсуждается соотношение предела прочности и предела выносливости, а также особенности поверхности разрушения УМЗ сплава ВТ6.

МЕТОДИКА ПРОВЕДЕНИЯ ИССЛЕДОВАНИЙ

Исходный материал - титановый сплав Ті-6Al-4V - был в горячекатаном состоянии с химическим составом сплава: 6,2 Al, 4,3 V, 0,02 Zr, 0,039 Si, 0,16 Fe, 0,06 C, 0,17 O, 0,015 N, 0,003 H в (вес. %), ост. Ті. Микроструктура исходных заготовок диаметром 20 мм состояла из равноосных зерен α-фазы со средним размером 15 мкм. С целью формирования в заготовках бимодальной (смешанной глобулярно-пластинчатой) микроструктуры заготовки были подвергнуты термообработке (TO), включающей закалку с температуры 975 °С в воду с последующим отжигом при температуре 675 °C в течение 4 часов. Для формирования УМЗ структуры исходные заготовки были подвергнуты комбинированной деформационно-термической обработке: 4 прохода РКУП при температуре 600 °C по маршруту В_С в инструменте с углом пересечения каналов 120°, теплое волочение до диаметра 12 мм при температуре 300 °C с суммарной степенью обжатия ~65% и последующий отжиг для снятия напряжений при 500 °C в течение одного часа.

Механические испытания цилиндрических образцов с размером рабочей части \emptyset 3×15 мм были проведены при комнатной температуре на универсальном динамометре Instron со скоростью деформации 1×10⁻³c⁻¹.

Рабочие поверхности гладких корсетных образцов были полированы до шероховатости Ra = 0,63 мкм. Испытания на усталость были проведены при комнатной температуре. Испытания образцов проводились в условиях изгиба с вращением с частотой f = 50 Гц в соответствии с ГОСТ 25.502-79. Коэффициент ассимметрии цикла составлял R ($\sigma_{min}/\sigma_{max}$)= -1, а база испытаний – $N_6 = 10^7$ циклов.

Анализ микроструктуры образцов проводился с помощью просвечивающего электронного микроскопа JEOL JEM 2100. Фрактографический анализ поверхности разрушения образцов после циклических испытаний проводился с помощью сканирующего электронного микроскопа JEOL JSM 6390 (РЭМ).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Микроструктура и механические свойства сплава BT6

На рис. 1, а представлена исходная бимодальная микроструктура сплава ВТ6, которая состояла из β-превращенной ламеллярной структуры со средним размером вторичной αфазы 1 мкм и зерен первичной α-фазы размером около 8 мкм, объемная доля которой не превышала 25%. На рис. 1, б приведена типичная УМЗ структура со средним размером зерен α- и β-фазы 250 нм, формируемая в сплаве ВТ6 после обработки методом РКУП с последующей экструзией и отжигом. По данным рентгенофазового анализа объемная доля α-фазы увеличилась после обработки с 85 до 94%. Уменьшение доли метастабильной β-фазы объясняется активным протеканием $\beta_m \rightarrow \alpha + \beta$ превращения, индуцированным ИПД.

Рис. 1. Изображения микроструктуры УМЗ сплава ВТ6: а – в исходном состоянии; б – в ультрамелкозернистом состоянии. Растровая электронная микроскопия

На рис. 2, а представлены типичные кривые растяжения образцов из сплава ВТ6 с бимодальной и УМЗ структурой. По результатам ме-Механические свойства Ті сплавов

ханических испытаний установлено, что предел прочности УМЗ сплава составил в среднем 1450 МПа по сравнению с 1050 МПа сплава с бимодальной структурой. Относительное удлинение (δ) образцов в среднем было 10%, т.е. немного ниже, чем относительное удлинение исходного образца, которое составило 13% (рис. 2, а). По результатам усталостных испытаний предел выносливости сплава с бимодальной микроструктурой составил 610 МПа после 10⁷ циклов, а УМЗ сплава - 690 МПа, т.е. почти на 40% вы-

Рис. 2. Кривые растяжения (a) и усталости (δ) образцов из сплава ВТ6: с бимодальной структурой и с УМЗ структурой

При сопоставлении значений предела выносливости и предела прочности сплава в обоих состояниях, величина отношения σ_1/σ_B для сплава с бимодальной и УМЗ структурой составляла 0,58 и 0,47 соответственно, т.е. повышение предела прочности сплава за счет формирования УМЗ структуры заметно выше, чем повышение предела выносливости. Подобное поведение демонстрируют и другие титановые материалы, подвергнутые ИПД [8,9], как это показано в табл.1.

Известно, что соотношение $\sigma_{-1}/\sigma_{\rm B}$ для титановых сплавов находится в пределах 0,4-0,6 (вероятность 90%). Разброс этого соотношения для титановых сплавов несколько больше, чем

для сталей ($\sigma_1/\sigma_B = 0.45 - 0.55$) [11]. В данном случае предел выносливости УМЗ сплава вполне коррелирует с пределом прочности, прогнозируемым данным соотношением.

Таблица	1
---------	---

в различных структурных состояниях				
Сплав	* <i>σ</i> в, МПа	σ ₋₁ (МПа), <i>N</i> f=10 ⁷ циклов	$\sigma_{\text{-l}}/\sigma_{\text{b}}$	
BT6				
бимодальная	1050	610	0,58	
УМЗ	1450	690	0,47	
Ti-6Al-4V ELI [9]				
глобулярная	1000	600	0,60	
УМЗ	1380	740	0,54	
Ti Grade 4 [7]				
крупнозернистая	700	380	0,54	
УМЗ	1290	610	0,47	

Особенности поверхности разрушения усталостных образцов

Для изучения особенностей усталостного разрушения сплава был проведен сравнительный анализ изломов образцов после испытаний, разрушившихся при напряжениях, близких к пределу выносливости сплава: образец с бимодальной структурой после $N_{\rm f} = 2.3 \times 10^6$ циклов при $\sigma_{\rm max} = 630$ МПа; и УМЗ образец – после $N_{\rm f} = 8.0 \times 10^6$ циклов при σ_{max} =682МПа. Установлено, что во всех образцах усталостные трещины зарождались на поверхности и распространялись вглубь перпендикулярно направлению действующих сил. Поверхность разрушения образцов в обоих состояниях можно разделить на три типичных зоны: І – область зарождения и стабильного роста трещины; II – область ускоренного роста трещины и III – статический долом (рис. 3).

Рис. 3. Общий вид поверхности разрушения образцов из сплава ВТ6: а – исходное состояние с бимодальной структурой ($\sigma_{max} = 630 M\Pi a$; $N_f = 2.3 \times 10^6$ циклов); б – УМЗ состояние $(\sigma_{max}=682Mna; N_f = 8.0 \times 10^6$ циклов). РЭМ

Рис. 4 представляет изображения поверхности разрушения после усталостных испытаний образцов из сплава ВТ6 с бимодальной и УМЗ структурой.

Рис. 4. Поверхность разрушения образцов из сплава ВТ6 с бимодальной структурой (σ_{max} = 630 МРа; $N_{\rm f} = 2.3 \times 10^6$ циклов), и с УМЗ структурой (σ_{max} = 682 МРа; $N_{\rm f} = 8 \times 10^6$ циклов), где (a, δ) область I, (b, c) – область II и (d, e) – область III. РЭМ

Поверхность разрушения образца с бимодальной структурой в области стабильного роста трещины имела плоский блочный рельеф с усталостными бороздками с расстоянием между ними около 1 мкм. Площадь данной зоны невелика и занимала примерно 17% от всей поверхности разрушения (рис. 3, а и 4, а). Размер отдельных блоков с усталостными бороздками был соизмерим с размером глобулей α-фазы (около 10 мкм). В области ускоренного роста усталостной трещины (рис. 4, в) строение рельефа имело смешанный характер, когда образование ступенек и хребтов чередовалось с вязким ямочным рельефом. При этом обнаружены вторичные микротрещины, расположенные перпендикулярно росту трещины. Средний размер ямок в области долома был неоднороден и варьировался от 1 до 5 мкм (рис. 4, ∂).

Поверхность разрушения УМЗ образца имеет некоторые отличительные особенности. Во-первых, зона стабильного роста трещины, когда скорость ее распространения относительно низкая, занимает значительно большую по сравнению с ТО образцом площадь (примерно 30%) (рис. 3, б). В отдельных микрообъемах просматривались усталостные микробороздки (отмечено окружностями на рис. 4, б). Зона ускоренного роста трещины имеет более развитый макробороздчатый рельеф, в котором области между бороздками имели вязко-ямочное строение (рис. 4, г). Зона долома также имела типичный для титановых сплавов ямочный характер, средний размер ямок составлял около 2мкм (рис. 4, е).

Рассматривая различия в усталостном поведении крупнозернистого (с бимодальной структурой) и УМЗ сплава ВТ6, следует отметить, что более высокая прочность УМЗ сплава повышает работу пластической деформации, что, в свою очередь, увеличивает продолжительность стадии зарождения усталостной трещины (І). Это может быть обусловлено повышением сопротивления микропластической деформации в поверхностном слое, которая происходит на стадии микротекучести в начальный период циклических испытаний [1]. В УМЗ материалах образование и передвижение новых дислокаций затруднено вследствие маленького размера зерен и присутствующих полей упругих напряжений, вызванных высокой плотностью дислокаций, внесенных ИПД [11]. В связи с этим напряжение течения, необходимое для развития микропластической деформации, и величина предела выносливости возрастает с уменьшением размера зерна. Зона ускоренного роста трещины (II) в обоих образцах имела типичное титановых для сплавов смешанное макробороздчатое строение, в котором чередуются ступеньки с вязким ямочным рельефом, что характерно при низких амплитудах напряжений или при напряжениях, близких к пределу выносливости [1]. При этом в УМЗ образце в этой зоне ямочный рельеф преобладает в КЗ образца, котором отличие ОТ В разрушения более поверхность шероховатая за счет большого количества ступенек и хребтов. По-видимому, высокая протяженность границ зерен в УМЗ сплаве

увеличивает ее путь, что также дает вклад в повышение долговечности образца при одинаковых условиях испытаний.

выводы

1. Результаты усталостных испытаний сплава ВТ6 демонстрируют повышение предела выносливости в сплаве с ультрамелкозернистой структурой почти на 40% по сравнению со сплавом с бимодальной микроструктурой.

2. Установлено, что соотношение предела выносливости и предела прочности УМЗ сплава ВТ6 составило 0.47, которое находится, как и для большинства промышленных титановых сплавов, в пределах 0,4–0,6 (вероятность 90%), и является важным условием для перспективных инженерных применений.

3. Анализ поверхности разрушения образцов после многоцикловых усталостных испытаний показал, что формирование УМЗ структуры в сплаве принципиально не меняет строение излома. Однако площадь усталостной зоны в УМЗ образце примерно на 20% больше по сравнению с усталостной зоной в образце с бимодальной структурой, что может быть связано с увеличением пути развития трещины за счет более высокой плотности границ зерен и субзерен.

БЛАГОДАРНОСТИ

Работа выполнена при частичной поддержке Российского Научного Фонда (РНФ) в рамках проекта № № 16-19-10356.

СПИСОК ЛИТЕРАТУРЫ

1. Терентьев В. Ф. Усталость металлических материалов. М: Наука, 2002. 248 с. [V. F. Terentyev, Fatigue of metal materials, (in Russian). Moscow: Nauka. 2002. P. 248.]

2. **Гецов Л. Б.** Материалы и прочность деталей газовых турбин. Л.: Машиностроение. Ленингр. отд-ние, 1973. 296 с. [L. B. Getsov, Materials and durability of gas turbine components, (in Russian). Leningrad: Mechanical Engineering. Leningrad branch. 1973. P. 296]

3. **Höppel H. W.** An overview: Fatigue behaviour of ultrafine-grained metals and alloys / Kautz M., Xu C., Murashkin M., Langdon T.G., Valiev R.Z., Mughrabi H. // International Journal of Fatigue. 2005. Vol. 28. pp.1-10.

4. Валиев Р. З., Александров И. В. Объемные наноструктурные металлические материалы: получение, структура и свойства. М.: ИКЦ «Академкнига», 2007. 398 с. [R. Z. Valiev and I. V. Alexandrov, Bulk nanostructured metallic materials: preparation, structure and properties, (in Russian). Moscow: ICC "Akademkniga". 2007. P. 398.]

5. Stolyarov V. V., Alexandrov I. V., Kolobov Yu. R., Zhu M., Zhu Y., Lowe T. // Fatigue'99, Proceeding of the 7th Int. Fatigue Congress, Beijing, P.R. China. 1999. Vol. 3. P. 1345.

6. **Vinogradov A. Y.** Cyclic behavior of ultrafine-grain titanium produced by severe plastic deformation / Stolyarov V.V., Hashimoto S., Valiev R.Z. // Materials Science Engeneering A. 2001. Vol. 318. pp. 163-173.

7. Семенова И. П. Прочность и повышенные усталостные свойства ультрамелкозернистых титановых полуфабрикатов, полученных интенсивной пластической деформацией // Металлы. 2010. №5. С. 87-94. [І. Р. Semenova, Durability and increased fatigue properties of ultrafine titanium semi-finished products produced by severe plastic deformation, (in Russian). Metals. 2010. V. 5. pp. 87-94.]

8. **Mechanical properties** of Ti-6AI-4V titanium alloy with submicrocrystalline structure produced by severe plastic deformation/ Zherebtsov S. [and other] // Materials Transactions. 2005. Vol. 46(9). P. 2020-2025.

9. Saitova L. R., Hoeppel H. W., Goeken M., Semenova I. P., Raab G. I., Valiev R. Z. Fatigue behavior of ultrafine-grained Ti-6Al-4V 'ELI' alloy for medical applications // Materials Science and Engineering A. Vol. 503 (2009). P. 145-147.

10. Семенова И. П. Наноструктурные титановые сплавы: новые разработки и перспективы применения / Рааб Г.И., Валиев Р.З. // Российские нанотехнологии. 2014. Т. 9. №5-6. С.79-90. [І. Р. Semenova, G. I. Raab and R. Z. Valiev, Nanostructured titanium alloys, new development and application prospects, (in Russian). Russian nanotechnologies. 2014. V. 9. No. 5-6. pp.79-90.]

11. Колачев Б. А., Полькин И. С., Талалаев В. Д. Титановые сплавы разных стран: справочник. М: ВИЛС, 2000, 316 с. [В. А. Kolachev, I. S. Polkin and V.D. Talalaev, Titanium alloys of different countries: Handbook, (in Russian). Moscow: VILS. 2000. P. 316.]

12. **Estrin Y.** Fatigue behaviour of light alloys with ultrafine grain structure produced by severe plastic deformation: An overview / Vinogradov A. // International Journal of Fatigue. 2010. Vol. 32. pp. 898-907.

ОБ АВТОРАХ

ВАЛИЕВ Роман Русланович, мл. науч. сотрудник НИИ ФПМ УГАТУ. Дипл. Инж. по машинам и технол. высокоэффективных процессов обработки (УГАТУ, 2009). Иссл. в обл. объемных наноструктурных металлов и вакуумно-плазменных защитных покрытий.

МОДИНА Юлия Михайловна, студ. маг. Дипл. б-ра по специальности наноинженерия (УГАТУ, 2015). Иссл. в обл. объемных наноструктурных металлов и вакуумноплазменных защитных покрытий.

ПОЛЯКОВ Александр Вадимович, науч. сотр. Дипл. инж.физ. по спец. «физ. металлов» (УГАТУ, 2008). Дипл. кандидата технических наук (МИСиС, 2015). Иссл. в обл. объемных наноструктурных металлов.

СЕМЕНОВА Ирина Петровна, в.н.с. Института физики перспективных материалов УГАТУ. Дипл. инж.-металлурга по специальности «Металловедение, оборудование и технология термообработки металлов». Д-р техн. наук по специальности «Металловедение и термообработка металлов» (ЮУрГУ, 2011). Обл. науч. интересов – наноструктурные титановые сплавы, полученные с использованием интенсивной пластической деформации.

ЖЕРНАКОВ Владимир Сергеевич, зав. каф. сопр. материалов. Дипл. инж.-мех. (УАИ, 1967). Д-р техн. наук по тепловым двигателям ЛА (УГАТУ, 1992). Проф., засл. деят. науки РФ, чл.-кол. АН РБ. Иссл. в обл. механики деформируемого тела.

METADATA

- **Title:** Fatigue strength and features of destruction ultrafine titanium alloy VT6.
- Authors: R. R. Valiev¹, Y. M. Modina², A. V. Polyakov³, I. P. Semenova⁴, V. S. Zhernakov⁵

Affiliation:

Ufa State Aviation Technical University (UGATU), Russia.

Email: ¹ rovaliev@gmail.ru, ² modina_yulia@mail.ru, ³ alex-v.polyakov@mail.ru, ⁴ semenova-ip@mail.ru, ⁵ sm.ugatu@mail.ru.

Language: Russian.

- Source: Vestnik UGATU (scientific journal of Ufa State Aviation Technical University), vol. 20, no. 2 (72), pp. 11-16, 2016. ISSN 2225-2789 (Online), ISSN 1992-6502 (Print).
- **Abstract:** This work is devoted to the study cycle fatigue resistance of ultrafine-grained (UFG) alloy VT6 received equal channel angular pressing in combination with subsequent extrusion and annealing. Torsion fatigue tests with rotation in a symmetrical loading cycle subjected samples of VT6 alloy with bimodal (globular-plate) and UFG structure. It is shown that the fatigue strength of the alloy UMP was 40% higher than the fatigue strength of the alloy with a bimodal structure. The basic difference in the fracture surface of samples, discussed the impact of the UFG structure on resistance of the material origin and propagation of fatigue cracks.
- **Key words:** Titanium alloy; ultrafine structure; cycle fatigue; fatigue strength; failure surface.

About authors:

VALIEV, Roman Ruslanovich, Junior Research Associate of IPAM USATU, Dipl. En. Machinery & Technology of Highperformance Machining Processes (UGATU, 2009).

Modina, Yulia Mihailovna, Master with a degree of Nanotechnology. Dipl. B. Nanoengineering (UGATU, 2015).

Polyakov, Alexandr Vadimovich, Research Associate of IPAM USATU. Dipl. En-Physicist with a degree in Physics of Metals (UGATU, 2008). Cand. of Tech. Sci. (MISiS, 2015).

Semenova, Irina Petrovna, Prof., Dept. of Nanotechnology. Leading Researcher of IPAM USATU. Dipl. En-Metallurgical with a degree in Material Science, Equipment & Technology of Heat Treatment of Metals (Ural Polytechnic Institute, 1981). Cand. of Tech. Sci. (Ural Polytechnic Institute, 1999), Dr. of Tech. Sci. (South Ural State Univ., 2011).

Zhernakov, Vladimir Sergeevich, Head of the Dept. of Strength of Materials. Dipl. En-Mechanical (UAI, 1967). Prof., Honored Scientist of Russia, Corresponding Member of the Academy of Sciences of the Republic of Bashkortostan.