ISSN 1992-6502 (Print) 2015. T. 19, № 2 (68). C. 63–68 _Вестник УГАМУ

ISSN 2225-2789 (Online) http://journal.ugatu.ac.ru

УДК 621.452.3:519.711.3

Новые алгоритмы Бортовой диагностики авиационного газотурбинного двигателя на базе нейро-нечетких сетей

С. В. Жернаков¹, **А. Т. Г**ильманшин²

¹zhsviit@mail.ru, ²arturg.2008@yandex.ru

ФГБОУ ВПО «Уфимский государственный авиационный технический университет» (УГАТУ)

Поступила в редакцию 15 декабря 2014

Аннотация Рассматривается применение нейро-нечетких алгоритмов для решения задач контроля и диагностики авиационных ГТД, описано построение математической модели ГТД и классификатора отказов, отражены их достоинства и недостатки перед классическими методами диагностики.

Ключевые слова: нейросетевая модель; нейро-нечеткий алгоритм; газотурбинный двигатель.

введение

Развитие современных газотурбинных двигателей требует более качественного и быстрого выявления неисправностей, для этого необходимо непрерывно совершенствовать системы контроля и диагностики таких двигателей. Функционирование таких систем в условиях «НЕ-факторов» в сочетании с высокой сложностью процессов протекающих в двигателе делает целесообразным применение интеллектуальных методов для решения задач контроля и диагностики ГТД наряду с классическими.

1. ПОСТАНОВКА ЗАДАЧИ

Современная цифровая система управления авиационного ГТД реализует управление двигателем во всех режимах его работы и обеспечивает устойчивую работу двигателя на переходных режимах и предотвращение различных аварийных ситуаций (рис. 1). Система состоит из трех основных блоков – блока контроля измеряемых параметров, бортовой системы контроля и диагностики, и системы автоматического управления [1].

Первичная обработка данных измерительных каналов в настоящее время осуществляется с использованием алгоритмов допускового контроля, отслеживающих выход измеряемых величин и их производных за заданные пределы. При обнаружении отказа измерительного канала для восстановления потерянной информации используется последнее достоверное значение измеряемого параметра. Такой метод имеет недостаточную эффективность обнаружения постепенного или плавающего отказа, а также низкую достоверность восстановленных данных на переходных режимах работы. Для решения данной проблемы возникает необходимость дополнять классические методы контроля и диагностики ГТД новыми, интеллектуальными, имеющими более высокую эффективность на любых режимах работы двигателя [2].

Для решения вышепоставленной задачи может быть использована интеллектуальная сис-

Работа поддержана грантом РФФИ 12-08-010-14.

тема, реализующая метод FDI (Fault Detection and Identification), в основе которой лежит нейросетевая математическая модель двигателя и нейронечеткий классификатор [3]. Такая система позволяет обнаруживать и классифицировать нештатные режимы работы газотурбинного двигателя, измерительных каналов и исполнительных механизмов в бортовых условиях. Структура данной системы показана на рис. 2.

Рис. 2. Структурная схема системы FDI

2. МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ

Выходные параметры математической модели могут быть использованы для диагностики нештатных режимов работы двигателя на основании сравнения вышеуказанных параметров с измеренными, а также для восстановления потерянных данных измерительных каналов в случае обнаружения их отказа.

Такая модель должна обладать рядом специальных свойств, важнейшими из которых являются следующие [4]:

• модель должна описывать свойства ГТД, определяющие нестационарность рабочих процессов, что означает необходимость использования динамической модели;

• структура математической модели ГТД должна обеспечить практическую возможность ее функционирования в комплексе с математическими моделями других элементов летательного аппарата.

Перспективным направлением в данной области является создание математической модели ГТД на основе нейронных сетей, важными свойствами которых являются способность к обучению, дообучению и обобщению накопленных знаний, что позволяет настраивать такую модель под параметры конкретного двигателя на основе экспериментальных данных. Вышеуказанным требованиям к математической модели отвечают рекуррентные нейронные сети, такие как сети Элмана и рекуррентные многослойные персептроны (NARX) [5].

Рис. 3. Структура нейросетевой модели газотурбинного двигателя

Проектирование и отладка математической модели осуществляется с использованием пакета Neural Network Toolbox, входящего в состав математиче-ского пакета МАТLAB. В результате моделирования была выбрана архитектура сети NARX, которая обеспечила наибольшую точность моделирования. Функция активации нейронов внутреннего слоя – сигмоидальная, выходного слоя – линейная. В качестве алгоритма обучения выбран алгоритм Левенберга– Марквардта. Структурная схема модели показана на рис. 3. Количество нейронов в скрытом слое выбирается исходя из минимальной ошибки обучения нейросети (рис. 4).

Рис. 4. Зависимость среднеквадратической ошибки нейронной сети от количества нейронов в скрытом слое

В табл. 1 приведена одна из выборок экспериментальных данных, на основе которых производилось обучение нейронной сети.

Расчетные данные, полученные путем моделирования ГТД с использованием нейросетевой модели, показаны в виде графиков на рис. 5. Таблица 1

Обучающая выборка								
G_t	n_1	n_2	T_4	P_4				
116.125	9.664	20.867	833.375	1.125				
125.750	10.000	21.758	817.125	1.093				
131.125	10.477	22.249	843.437	1.121				
132.875	10.820	22.813	860.250	1.144				
136.000	11.266	23.414	879.438	1.174				
138.375	11.711	24.047	902.250	1.181				
139.125	12.305	24.930	933.813	1.202				
143.875	12.836	25.758	955.250	1.215				
145.750	13.461	26.742	974.687	1.229				
208.000	36.742	61.336	616.688	3.196				
243.375	43.273	65.945	640.125	3.902				
319.500	54.047	71.695	635.688	5.267				
425.000	67.203	77.258	637.063	7.135				
481.250	72.883	79.461	639.500	8.122				
524.250	75.492	80.695	647.625	8.732				
582.875	78.594	82.008	663.313	9.404				
624.875	80.797	82.906	677.063	9.958				

Ofwarene purfere

-1 Figure 1 File Edit View Insert Lools Desktop Window Help 14 6 6 6 6 6 9.094.4·C [[[]=] 0.8 0.6 0.5 0.3 0.2 0.1 14000 4000 6000 8000 10000 12000

Рис. 5. Данные математического моделирования ГТД

3. НЕЙРО-НЕЧЕТКИЙ КЛАССИФИКАТОР ОТКАЗОВ

Нейро-нечеткий классификатор отказов выдает заключение о исправности двигателя или его систем на основании вектора ошибок ε , полученного в результате поэлементного сравнения вектора расчетных данных модели Y_m (рис. 5) с вектором измеренных данных Y. Данный классификатор может иметь следующие состояния:

- исправное состояние;
- отказ измерительного канала;
- отказ исполнительного механизма;
- отказ ГТД;
- отказ системы автоматического управления.

Процесс создания классификатора отказов на базе нейро-нечетких алгоритмов состоит из 4 этапов [6]:

• Формулировка набора правил типа ЕС-ЛИ – ТО на основании сведений о соответствии отклонения измеренных данных от расчетных той или иной неисправности.

• Построение нейронной сети, которая является базой системы нечеткого вывода.

• Обучение нейронной сети с использованием эталонной выборки входных и выходных данных, представляющих собой массивы экспериментальных данных измерительных каналов ГТД.

• Настройка параметров входных функций принадлежности для минимизации ошибки обучения.

Моделирование нейро-нечеткого классификатора производится с использованием редактора ANFIS editor математического пакета MATLAB на основе данных полученных в ходе полетных испытаний ГТД, а также результатов моделирования отказов ГТД и его систем с использованием полной поэлементной математической модели ГТД [7]. Правила нечеткого вывода данного классификатора показаны на рис. 6, а его структура – на рис. 7.

Обучение нейросети классификатора проводилось с использованием входных измеренные и расчетных данные каналов n_1 , n_2 , P_k , T_4 , включающих отклонения, полученные путем моделирования отказов двигателя и датчиков, а также выходные эталонные данные, представляющие собой сигнал о соответствующем отказе. Выборка обучающих данных изображена на рис. 8.

Рис. 6. Правила нечеткого вывода

Рис. 7. Структура нейро-нечеткого классификатора

Рис. 8. Выборка обучения нейро-нечеткого классификатора

Сравнительный анализ точности классического и нейро-нечеткого методов классификации отказов приведен в табл. 2. В ней отображены вероятности ошибок 1 и 2 рода при классификации дефекта компрессора низкого давления и отказа измерительного канала n_1 .

		Таблица	2
Сравнительная	характеристика	методов	

	Вероятность ошибки определения отказа, %				
Метод классификации	Деф компрес	оект сора НД	Отказ канала n ₁		
	Ошибка 1 рода	Ошибка 2 рода	Ошибка 1 рода	Ошибка 2 рода	
Классический метод (допусковый контроль)	1,5	1,1	2,4	1,7	
Нейро-нечеткий метод	0,6	0,3	0,9	0,3	

4. РЕАЛИЗАЦИЯ НЕЙРОСЕТЕВЫХ АЛГОРИТМОВ

Выполнение нейросетевого алгоритма заключается в расчете выходных сигналов нейронов на основе входных сигналов и весовых коэффициентов сначала для входного, затем для выходного слоя. Математическая модель нейрона следующая:

$$y = f\left(\sum_{i=1}^{n} w_i x_i + b\right);$$

где w_i – вес синапса, i = 1...n, n – число входов нейрона, b – значение смещения, x_i – входной сигнал, y – выходной сигнал, f – функция активации. Для повышения быстродействия нейросетевого алгоритма целесообразно применение в качестве функции активации нейронов скры-

того слоя функции $f(s) = \frac{s}{a+|s|}$ (рациональная

сигмоида), требующей малого объема вычислений по сравнению с экспоненциальной функцией или функцией гиперболического тангенса. Нейроны выходного слоя имеют линейную функцию активации.

Рассмотрим реализацию нейросетевого алгоритма на базе 16-разрядного микроконтроллера ST10F269 фирмы STMicroelectronics. Микроконтроллеры этой серии получили широкое распространение в современных цифровых системах автоматического управления, в том числе и в авиации. Наличие в составе ядра данного контроллера модуля умножителя-накопителя (MAC) позволяет увеличить скорость вычисления алгоритма за счет совмещения операций умножения и сложения при взвешенном суммировании в сумматоре нейрона.

Входные и выходные параметры, а также весовые коэффициенты нейронной сети имеют формат 16-разрядных чисел с фиксированной запятой. Весовые коэффициенты задаются во время обучения нейросети, и сохраняются в ПЗУ. При запуске программы они записываются в соответствующие ячейки ОЗУ. Подпрограмма нейросетевого алгоритма в качетве входных параметров использует определенные ячейки ОЗУ, и записывает рассчитанные выходные параметры по аналогии.

Далее приведен пример ассемблерного кода для одного искусственного нейрона сети с использованием умножителя-накопителя (MAC).

Repeat #13 times CoMAC [IDX0+], [R0+] ; Функция умножения-накопления MOV MDL, MAH ;

```
MOV R1, MDL
   ; Запись результата s в источник
   ; для инструкции деления
JMPA CC_NN, ifpos
   ; Условный переход по знаку +
NEG R1
   ; инверсия знака, если число
   ; отрицательное s = |s|
ifpos: ADD R1, coefmem
   ; Сложение с коэффициентом a
DIV MDL, R1
   ; Деление s/(a+|s|)
MOV iresmem, MDL
   ; Запись результата в соотв.
   ; ячейку памяти
```

Рассчитаем время выполнения нейросетевого алгоритма на данном микроконтроллере при тактовой частоте 40 МГц. Время выполнения командного цикла $T_{CY} = 25$ нс.

Таблица 3 Время выполнения команд ST10F249

Команды	Мин. время выполнения <i>T_{Imin},</i> тактов		
DIV	20		
JMPA	4		
CoMAC; ADD; MOV; NEG	2		

В табл. 3 приведено время выполнение команд, использованных в представленном выше ассемблерном коде.

Общее время выполнения кода для одного нейрона $T = (n \times T_{CoMAC} + 3 \times T_{MOV} + T_{DIV} + T_{JMPA} + T_{ADD} + T_{NEG}) \times 25$ нс = ($n \times 50 + 850$) нс.

Расчет нейросетевой модели ГТД в таком случае займет $T = 13 \times (3 \times 50 + 850) + 4 \times (13 \times 50 + 850) = 19000$ нс = 19 мкс.

В случае необходимости более высокой скорости выполнения алгоритмов либо повышения их точности, что приведет к увеличению числа искусственных нейронов, и, соответственно, увеличению количества выполняемых вычислительных операций, может быть целесообразным реализация данных алгоритмов на базе программируемых логических интегральных схем (ПЛИС). Вычисления в одном слое нейронной сети выполняются независимо для каждого нейрона, поэтому при реализации их на ПЛИС возможно параллельное вычисление выходных данных нейронов в слое. Это позволяет реализовать нейросетевой алгоритм за единицы тактов, что при тактовой частоте > 200 МГц составит десятки наносекунд.

ЗАКЛЮЧЕНИЕ

В ходе работы были установлены следующие преимущества использования интеллектуальных методов для решения вышеуказанных задач:

• повышение эффективности диагностики плавающих отказов

• простота обучения и дообучения применяемых моделей

точность вычислений в условиях «нефакторов»

• возможность повышения производительности и отказоустойчивости вычислительных алгоритмов за счет применения технологии параллельных вычислений.

СПИСОК ЛИТЕРАТУРЫ

1. Васильев В. И., Жернаков С. В., Фрид А. И. и др. Нейрокомпьютеры в авиации (самолеты) / под ред. В. И. Васильева, Б. Г. Ильясова, С. Т. Кусимова. Кн. 14. М.: Радиотехника, 2003. 496 с. [[V. I. Vasilyev, S. V. Zhernakov, A. I. Frid, *Neurocompters in aviation (airplanes),* Book 14: Tutorial for higher education. Moscow.: Radiotekhnika, 2003.]]

2. Интеллектуальные системы управления и контроля газотурбинных двигателей / под ред. С. Т. Кусимова, Б. Г. Ильясова, В. И. Васильева. М.: Машиностроение, 2008. 549 с. [[S. T. Kusimov, B. G. Ilyasov, V. I. Vasil'yev (Ed.), Intellectual systems of gas turbine engines control and check systems. Moscow: Mashinostroyeniye, 2008.]]

3. Жернаков С. В. К вопросу о построении гибридных нейро-нечетких экспертных систем диагностики и контроля ГТД // Управление в сложных системах. Уфа: УГАТУ, 1999. С. 119–126. [[S. V. Zhernakov, "The diagnosis and prediction of the state of a gas-turbine engine by hybrid neuro fuzzy expert systems," J. Comput. Syst. Sci. Int. 38, no. 5, pp. 819-824, 1999 (translation from *Izv. Akad. Nauk, Teor. Sist.* Upr., no. 5, pp. 156-161, 1999.]]

4. **Чуян Р. К.** Методы математического моделирования двигателей летательных аппаратов. М.: Машиностроение, 1988. 288 с. [[R.K. Chuyan, *Modelling methods of aircraft engines*. Moskow: Mashinostroyeniye, 1988.]]

5. Хайкин С. Нейронные сети: полный курс. М: Вильямс, 2006. 1104 с. [[Simon Haykin, *Neural networks - A comprehensive foundation*. Moscow: Williams, 2006.]]

6. Рутковская Д., Пилиньский М., Рутковский Л. Нейронные сети, генетические алгоритмы и нечеткие системы / Пер. с польск. И. Д. Рудинского. М.: Горячая линия – Телеком, 2006. 452 с. [[D. Rutkovskaya, M. Pilinsky, L. Rutkovsky, *Neural networks, genetic algorithms and fuzzy systems* (Transl. from Polish). Moscow: Goryachaya liniya – Telekom, 2006.]]

7. Штовба С. Д. Проектирование нечетких систем средствами MATLAB. М.: Горячая линия – Телеком, 2007. 288 с. [[S. D. Shtovba, *Fuzzy system projecting using MATLAB facilities*. Moscow: Telecom, 2007.]]

ОБ АВТОРАХ

ЖЕРНАКОВ Сергей Владимирович, зав. каф. электроники и биомедицинских технол. Дипл. инж. по пром. электронике (УГАТУ, 1984). Д-р техн. наук по сист. анализу, упр. и обр. инф. (УГАТУ, 2005). Иссл. в обл. интел. систем.

ГИЛЬМАНШИН Артур Тагирович, асп. каф. электроники и биомедицинских технол. М-р техн. и технол. по инф. и выч. техн. (УГАТУ, 2011). Готовит дис. в области контроля и диагностики авиац. газотурбинных двиг.

METADATA

Title: New onboard gas turbine engine diagnostic algorithms based on neural-fuzzy networks.

Authors: S. V. Zhernakov, A. T. Gilmanshin.

Affiliation:

Ufa State Aviation Technical University (UGATU), Russia.

Email: zhsviit@mail.ru, arturg.2008@yandex.ru.

Language: Russian.

- Source: Vestnik UGATU, vol. 19, no. 2 (68), pp. 63-68, 2015. ISSN 2225-2789 (Online), ISSN 1992-6502 (Print).
- **Abstract:** The application of neuro-fuzzy algorithms for solving problems of control and diagnostics of gas turbine engines are reviewed, the construction of a mathematical model of gas turbine engines and classifier bounce, reflections, are their advantages and disadvantages over classical diagnostic methods are described.
- Key words: neural network model; neuro-fuzzy algorithm; gas turbine engine.

About authors:

ZHERNAKOV, Sergey Vladimirovich, Dr. (Habil.) Tech. Sci, Prof., Head, Dept. of Electronics and Biomedical Technology, Ufa State Aviation Technical University.

GILMANSHIN, Artur Tagirovich, Postgrad. (PhD) Student, Dept. of Electronics and Biomedical Technology, Ufa State Aviation Technical University.