УДК 621.9.047

ПРЕДЕЛЬНО-КВАЗИСТАЦИОНАРНОЕ РЕШЕНИЕ ЗАДАЧИ ЭЛЕКТРОХИМИЧЕСКОГО КОПИРОВАНИЯ ЗУБЧАТОЙ ПОВЕРХНОСТИ С РАЗЛИЧНЫМ УГЛОМ РАСТВОРА КЛИНА ЭЛЕКТРОД-ИНСТРУМЕНТА

В. П. Житников¹, Н. М. Шерыхалина², А. А. Зарипов³, А.А. Соколова⁴

¹ zhitnik@mail.ru, ² n_sher @mail.ru, ³ jacud@yandex.ru, ⁴alexandrakrasich@gmail.com ФГБОУ ВО «Уфимский государственный авиационный технический университет» (УГАТУ) Поступила в редакцию 29.07.2018

Аннотация. Решается задача моделирования нестационарной электрохимической обработки электрод-инструментом с впадиной клинообразной формы с произвольным углом раствора клина. Для моделирования процесса анодного растворения используется ступенчатая функция выхода по току. Для исследования режима с наибольшей локализацией процесса растворения рассматривается случай совпадения критической напряженности с максимальным ее значением на обрабатываемой поверхности. Для решения используются конформные отображения. Найдено точное (в квадратурах) решение задачи и получены численные результаты, позволяющие определить форму обрабатываемой поверхности в различные моменты времени.

Ключевые слова: комплексный потенциал; конформное отображение; выход по току; квазистационарная модель; предельное решение.

введение

Моделирование электрохимической обработки (ЭХО) основано на законе Фарадея, согласно которому скорость растворения V_{ecm} равна [1]

$$V_{ecm} = \frac{k}{\kappa} \eta j, \quad k = \frac{\kappa \varepsilon}{\rho}, \quad (1)$$

где є – электрохимический эквивалент; ρ – плотность растворяемого материала; κ – электропроводность электролита; j – плотность тока на анодной границе; $\eta = \eta(j)$ – выход по току (доля тока, участвующего в реакции растворения металла).

В данной работе зависимость выхода по току от плотности тока моделируется ступенчатой функцией [2–7]

$$\eta(j) = \begin{cases} \eta_0, & j > j_1, \\ 0 \le \eta \le \eta_0, & j = j_1, \\ 0, & j < j_1. \end{cases}$$
(2)

Рассматривается режим обработки, называемый предельно квазистационарным, при котором в каждой точке анода, где происходит растворение, $j = j_1$, а η может изменяться от η_0 до нуля или какой-то минимальной величины. При этом достигается наивысшая степень локализации процесса растворения [8].

Нагревом электролита и газонаполнением пренебрегается, и рассматривается идеальный процесс в однородном электролите. При допущении об идеальности среды для решения задачи можно применить методы теории функций комплексного переменного и использовать конформные отображения.

Работа поддержана грантом РФФИ 17-07-00356.

постановка задачи

Рассмотрим нестационарную задачу электрохимической обработки с помощью электрода-инструмента (ЭИ) FCG с зубчатой периодической поверхностью. Форма межэлектродного пространства (МЭП) в некоторый момент времени показана на рис. 1, а. Рассматривая один период, ограничим межэлектродное пространство (МЭП) вертикальными пластинами FA и GB из изоляционного материала. Изначально плоская заготовка ADB движется в направлении ЭИ со скоростью V_a. Начальный межэлектродный зазор (расстояние AF) равен S_0 , ширина ячейки L, разность потенциалов между электродами равна U.

комплексного потенциала; FCG – ЭИ (катод); ADB – обрабатываемая поверхность (анод)

Пусть комплексные координаты Z = X + iY. В связи с эквипотенциальностью электродов форма области МЭП на плоскости комплексного потенциала $W = \varphi + i\psi$ (φ – потенциал электрического поля, ψ – функция тока) представляет собой прямоугольник (рис. 1, δ). Линиям тока *FA* и *GB* соответствуют горизонтальные отрезки. При этом величина напряженности электрического поля определяется произ-

водной $E = \left(\frac{dW}{dZ}\right)$, а плотность тока в соответствии с законом Ома $i = \kappa |E|$.

Конформно отобразим область МЭП на прямоугольник параметрической плоскости χ (рис. 2, *a*). Для выполнения условия $\text{Re}z(\chi) = \text{const}$ на участках границы *FA* и *GB* функцию $z(\chi, \tau)$, согласно принципу симметрии, следует аналитически продолжить симметрично отрезку *GB* (рис. 2, *a*). Если форма ЭИ является симметричной, то продолжение не проводится. Связь плоскостей χ и *W* осуществляется функцией

Рис. 2. Форма образов МЭП для α = 1: а – на параметрической плоскости; б – на плоскости годографа напряженности $\overline{E} = dw/dz$; M – точка перегиба анодной поверхности

При этом закон Фарадея (1) в векторном виде можно выразить формулой:

$$\frac{dZ}{dt} = k\eta \overline{\left(\frac{dW}{dZ}\right)}.$$

Перейдем к безразмерным величинам x, y, τ , w:

$$x = \frac{X}{l}, \quad y = \frac{Y}{l}, \quad \tau = \frac{V_{\text{et}}}{l}t = \frac{k\eta_0 U}{l^2}t, \quad w = \frac{W}{U}$$

Здесь l – величина стационарного зазора в задаче об обработке плоским горизонтальным ЭИ. Из условия $V_{ecm} = V_a$ в (1) определяем $V_a = k\eta_0 U/l$. Тогда $l = k\eta_0 U/V_a$, $E_0 = U/V_a$. При этом безразмерная скорость

$$v_a = \frac{dy_D}{d\tau} = \frac{dY_D}{V_a dt} = 1.$$

В безразмерном виде закон Фарадея

$$\frac{dz}{d\tau} = \frac{dZ}{V_{et}dt} = \frac{k\eta U}{V_{et}l} \left(\frac{dw}{dz}\right) = \frac{\eta}{\eta_0} \left(\frac{dw}{dz}\right).$$

На рис. 2, δ показана плоскость годографа безразмерной напряженности $\overline{E} = dw/dz$, где ввиду симметрии изображена только правая половина формы области, соответствующая левой половине области плоскости Z.

Поскольку при $|\omega| < 1$ растворения не происходит, а значение $|E| = E_1 = j_1 / \kappa = E_0$ является максимальным в данном процессе, на всех участках, где растворение происходит, модуль $|\omega| = 1$. При этом области анода соответствует разрез по дуге окружности $|\omega| = 1$ *АМН* и части вертикальной прямой *HD*, соответствующей нерастворенной части обрабатываемой поверхности. Это позволяет получать решения, соответствующие различным моментам времени τ не решая нестационарной задачи, т.е. квазистационарно, аналогично [3]. В данной постановке задачи квазистационарное решение является точным, а не приближенным к нестационарному.

Границе катода *CF* соответствует луч, расположенный под углом *у* к оси абсцисс.

Таким образом, для решения задачи необходимо найти конформное отображение области МЭП плоскости годографа на плоскость *w* (рис. 1, *б*).

РЕШЕНИЕ ЗАДАЧИ

Применив преобразование

$$\omega = i \ln \frac{\overline{E}}{E_1} = \theta + i\tau, \ \tau = \ln \frac{|E|}{E_1}, \qquad (4)$$

получим на плоскости ω многоугольник с углами *A*, *C*, *F*, *M*, *H*, равными $\pi/2$; 0; 0, 2π ; $\pi/2$ соответственно (рис. 3, *a*).

Используя преобразование Шварца-Кристоффеля, получим конформное отображение верхней полуплоскости t_1 (рис. 4, δ) на этот многоугольник

$$\omega(t_1) = iC_1 \int_{\infty}^{t_1} \frac{(\zeta + \mu)dt_1}{(\zeta - \nu)(\zeta - 1)\zeta^{1/2}} + \frac{\pi}{2}$$

Поскольку

$$\frac{\zeta + \mu}{(t_1 - \nu)(t_1 - 1)} = \frac{\mu + \nu}{\nu - 1} \frac{1}{t_1 - \nu} - \frac{\mu + 1}{\nu - 1} \frac{1}{t_1 - 1},$$
$$\int \frac{dt_1}{(t_1 - \nu)\sqrt{t_1}} =$$

$$=2\int \frac{du}{u^2-v}=\frac{1}{\sqrt{v}}\ln\frac{u-\sqrt{v}}{u+\sqrt{v}}=\frac{1}{\sqrt{v}}\ln\frac{\sqrt{t_1}-\sqrt{v}}{\sqrt{t_1}+\sqrt{v}},$$

то $\omega(t_1) =$

$$=iC_{1}\frac{\mu+\nu}{(\nu-1)}\frac{1}{\sqrt{\nu}}\ln\frac{\sqrt{t_{1}}-\sqrt{\nu}}{\sqrt{t_{1}}+\sqrt{\nu}}-iC_{1}\frac{\mu+1}{\nu-1}\ln\frac{\sqrt{t_{1}}-1}{\sqrt{t_{1}}+1}+\frac{\pi}{2}$$

Рис. 3. Формы образа МЭП на плоскостях: *а – на плоскости ю*; *б – на параметрической плоскости t*₁; *в – на параметрической плоскости*

Поскольку в соответствии с рис. 3, а

$$\operatorname{Re}\omega\left(\frac{1+\nu}{2}\right) = \gamma, \operatorname{Re}\omega(0) = \frac{\pi}{2},$$

то

$$\operatorname{Re}\omega\left(\frac{1+\nu}{2}\right) = -\pi C_1 \frac{\mu+\nu}{(\nu-1)} \frac{1}{\sqrt{\nu}} + \frac{\pi}{2} = \gamma,$$

$$\operatorname{Re}\omega(0) = -\pi C_1 \frac{\mu+\nu}{(\nu-1)} \frac{1}{\sqrt{\nu}} + \pi C_1 \frac{\mu+1}{\nu-1} + \frac{\pi}{2} = \frac{\pi}{2}$$

$$C_1 = \left(\frac{1}{2} - \frac{\gamma}{\pi}\right) \frac{(\nu-1)\sqrt{\nu}}{\mu+\nu}, \quad \mu = \sqrt{\nu}.$$

Тогда получим окончательно

$$\omega(\zeta) = i \left(\frac{1}{2} - \frac{\gamma}{\pi}\right) \ln \frac{\sqrt{t_1} - \sqrt{\nu}}{\sqrt{t_1} + \sqrt{\nu}} - i \left(\frac{1}{2} - \frac{\gamma}{\pi}\right) \ln \frac{\sqrt{t_1} - 1}{\sqrt{t_1} + 1} + \frac{\pi}{2}.$$
 (5)

Для удобства численного интегрирования в качестве основной параметрической плоскости выберем полукольцо плоскости ζ (рис. 3, *в*). Внешность полукруга радиуса p отображается на верхнюю полуплоскость с помо-

щью функции
$$u_1 = \left(\frac{\zeta - p}{\zeta + p}\right)$$
 . При этом по-

лукольцо отображается на полуплоскость с вырезом овальной формы (рис. 4, *a*), где $a_1 = \left(\frac{1-p}{1+p}\right)^2$. Чтобы превратить эту область

в полуплоскость, используем ряд Лорана с действительными коэффициентами

$$u_2(\zeta) = \left(\frac{\zeta - p}{\zeta + p}\right)^2 + \sum_{m=1}^{\infty} c_m \left(\left(\frac{\zeta}{p}\right)^m + \left(\frac{\zeta}{p}\right)^{-m}\right)$$

На полуокружности *AHD* $\zeta = e^{i\sigma}$

$$u_2(e^{i\sigma}) =$$

$$\begin{split} &= \left(\frac{1-pe^{-i\sigma}}{1+pe^{-i\sigma}}\right)^2 + \sum_{m=1}^{\infty} c_m \left(p^{-m}e^{im\sigma} + p^m e^{-im\sigma}\right) = \\ &= \left(1-pe^{-i\sigma}\right)^2 \sum_{m=0}^{\infty} \left(-1\right)^m (1+m) p^m e^{-im\sigma} + \\ &+ \sum_{m=1}^{\infty} c_m \left(p^{-m}e^{im\sigma} + p^m e^{-im\sigma}\right) = \\ &= 1-2pe^{-i\sigma} + p^2 e^{-i2\sigma} - 2pe^{-i\sigma} + \\ &+ 3p^2 e^{-i2\sigma} + \sum_{m=3}^{\infty} \left(-1\right)^m (1+m) p^m e^{-im\sigma} + \\ &+ 4p^2 e^{-i2\sigma} - 2\sum_{m=3}^{\infty} \left(-1\right)^{m-1} m p^m e^{-im\sigma} + \\ &+ \sum_{m=3}^{\infty} \left(-1\right)^m (m-1) p^m e^{-im\sigma} + \\ &+ \sum_{m=3}^{\infty} \left(-1\right)^m (m-1) p^m e^{-im\sigma} + \\ &+ \sum_{m=3}^{\infty} \left(-1\right)^m \left[\left(1+m\right) + 2m + \left(m-1\right)\right] p^m e^{-im\sigma} + \\ &+ \sum_{m=3}^{\infty} \left(-1\right)^m \left[\left(1+m\right) + 2m + \left(m-1\right)\right] p^m e^{-im\sigma} + \\ &+ \sum_{m=3}^{\infty} c_m \left(p^{-m} e^{im\sigma} + p^m e^{-im\sigma}\right) = \\ &= 1 - 4pe^{-i\sigma} + 8p^2 e^{-i2\sigma} + \end{split}$$

$$+4\sum_{m=3}^{\infty} (-1)^{m} m p^{m} e^{-im\sigma} + \sum_{m=0}^{\infty} c_{m} \left(p^{-m} e^{im\sigma} + p^{m} e^{-im\sigma} \right) =$$

$$= 1 + 4\sum_{m=1}^{\infty} (-1)^{m} m p^{m} e^{-im\sigma} +$$

$$+ \sum_{m=1}^{\infty} c_{m} \left(p^{-m} e^{im\sigma} + p^{m} e^{-im\sigma} \right) =$$

$$= 1 + 4\sum_{m=1}^{\infty} (-1)^{m} m p^{m} (\cos m\sigma - i \sin m\sigma) +$$

$$+ \sum_{m=1}^{\infty} c_{m} \left(p^{-m} \cos m\sigma + p^{m} \cos m\sigma \right) +$$

$$+ i\sum_{m=1}^{\infty} c_{m} \left(p^{-m} \sin m\sigma - p^{m} \sin m\sigma \right).$$

Условием отображения на полуплоскость является равенство $\text{Im } u_2(e^{i\sigma}) = 0$

$$\sum_{m=1}^{\infty} \left[-4(-1)^m m p^m + c_m \left(p^{-m} - p^m \right) \right] \sin m\sigma = 0.$$

Отсюда

$$c_m = \frac{(-1)^m 4mp^{2m}}{1-p^{2m}}$$

Тем самым

б

Рис. 4. Формы образа МЭП на плоскостях: $a - u_1; \, \delta - u_2$ Верхняя полуплоскость с обозначением точек показана на рис. 4, *б*. При этом

$$a_2 = u_2(1), \quad d_2 = u_2(-1), \quad h_2 = u_2(e^{i\sigma^*}),$$

 $f_2 = u_2(p), \quad u_2(-p) = \infty,$

где $e^{i\sigma^*}$ – образ точки *H* на плоскости ζ .

Остается отобразить верхнюю полуплоскость u_2 на полуплоскость t_1

$$t_1 = v \frac{u_2 - a_2}{u_2 - h_2} \,.$$

Конформное отображение $w(\zeta)$ определяется по формуле

$$w = -\frac{1}{\ln p} \ln \zeta \,. \tag{6}$$

Производная

$$\frac{dw}{d\zeta} = -\frac{1}{\ln p} \frac{1}{\zeta}$$

Таким образом, согласно (4)–(6) имеем две функции: $\frac{dw}{dz} = f_E(\zeta)$ и $w(\zeta)$. Для вычисления координат точек плоскости *z* отсюда найдем

$$\overline{E} = E_1 \frac{dw}{dz} = e^{-i\omega(\zeta)} =$$

$$= -i \left(\frac{\sqrt{t_1} - \sqrt{\nu}}{\sqrt{t_1} + \sqrt{\nu}} \frac{\sqrt{t_1} + 1}{\sqrt{t_1} - 1} \right)^{\frac{1-\gamma}{2-\pi}},$$

$$dz = \frac{dw}{f_E(\zeta)} = \frac{1}{f_E(\zeta)} \frac{dw}{d\zeta} d\zeta =$$

$$= -\frac{1}{\ln p} \frac{1}{f_E(\zeta)} \frac{d\zeta}{\zeta} = f_z(\zeta) d\zeta.$$
(7)

Численно интегрируя (7), найдем z_D в системе координат, связанной с ЭИ

$$z_D = \int_p^1 f_z(\zeta) d\zeta + \int_1^{e^{i\sigma^*}} f_z(\zeta) d\zeta + \int_{e^{i\sigma^*}}^{-1} f_z(\zeta) d\zeta,$$

где $e^{i\sigma^*}$ – образ точки *H* на плоскости ζ .

В этой системе координат анод движется вверх со скоростью $v_{et} = 1$. Отсюда получается система двух нелинейных уравнений

 $\operatorname{Re} z_D = \frac{L}{2}, \quad \operatorname{Im} z_D = \tau - 1,$

которая решается методом Ньютона с регулированием шага относительно параметров σ^* и *р*. Для оценки погрешности и уточнения результатов численного интегрирования применяется фильтрация результатов вычислений [9–11].

РЕЗУЛЬТАТЫ РЕШЕНИЯ

На рис. 5 приведены формы анодной поверхности в различные моменты времени в случае угла раствора $\gamma = \pi/4$. На вершине выступа, образующегося на поверхности анода, имеет место прямолинейный участок, соответствующий нерастворенной поверхности. Поскольку вершина выступа не растворяется, то она движется вверх со скоростью $v_a = 1$. При завершении обработки за конечное время $\tau < 9$ получается окончательная предельная форма, обозначенная на рис. 5 буквой «П», соответствующая выполнению условия $|\omega| = 1$ на всей поверхности анода.

ЗАКЛЮЧЕНИЕ

Таким образом, в данной работе с помощью конформных отображений решена задача моделирования квазистационарного процесса электрохимического копирования.

Квазистационарная модель позволила получить точные (в квадратурах) решения задач ЭХО обработки ЭИ с клиновидной впадиной.

Результаты численного интегрирования полученного решения позволили определить форму заготовки в различные моменты времени. В предельных случаях ($E_0 = E_1$) квазистационарная модель дает точное решение нестационарной задачи. При этом квазистационарное решение требует существенно меньших затрат вычислительных ресурсов по сравнению с нестационарным.

СПИСОК ЛИТЕРАТУРЫ

1. Клоков В. В. Электрохимическое формообразование. Казань: изд-во Казан. ун-та 1984. 80 с. [V. V. Klokov, *Electrochemical shaping*, (in Russian). Kazan: KGU, 1984.]

2. Житников В. П., Ошмарина Е. М., Федорова Г. И. Использование разрывных функций для моделирования растворения при стационарном электрохимическом формообразовании // Изв. Вузов. Математика. 2010, № 10. С. 77–81. [V. P. Zhitnikov, E. M. Oshmarina, G. I. Feforova, "The use of discontinuous functions for modeling the dissolution process of steady-state electrochemical shaping", (in Russian), in *Izv. Vuzov. Matematika*, no.10, pp. 67-70, 2010.]

3. Житников В. П., Ошмарина Е. М., Федорова Г. И. Точные решения двух задач предельного квазистационарного электрохимического формообразования // Известия вузов. Математика, 2011. № 12. С. 21–29. [V. P. Zhitnikov, E. M. Oshmarina, G. I. Feforova, "Exact solutions of two limiting quasistationary electrochemical shaping problems", (in Russian), in *Izvestiya vyzov*. Matematika, vol. 55, no.12, pp. 16-22, 2011.]

4. Моделирование электрохимического формообразования при ограничениях на растворение / В. П. Житников и др. // Научно-технические ведомости СПбГПУ. СПб. 2009. №4 (82). С. 221–224. [V. P. Zhitnikov, et. al., "Modeling of electrochemical shaping at the restriction of dissolution", (in Russian), in *Nauchno-Tekhnicheskie vedomosti SPbBPU,* no. 4 (82), pp. 221-224, 2009.]

5. Житников В. П., Муксимова Р. Р., Ошмарина Е. М. Моделирование процессов нестационарного электрохимического формообразования применительно к прецизионным технологиям // Труды математического центра имени Н. И. Лобачевского. 2010. Т. 42. С. 99–122. [V. P. Zhitnikov, R. R. Muksimova, E. M. Oshmarina, "Modeling of nonstationary electrochemical shaping processes applying to precision technologies", (in Russian), in *Trudy matematicheskogo tsentra im. N. I. Lobachevskogo*, vol. 42, pp. 99-122, 2010.]

6. Предельная модель электрохимической размерной обработки металлов / В. П. Житников и др. // ПМТФ. 2014. Т. 55, № 4. С. 193–201. [V. P. Zhitnikov, E. M. Oshmarina, S. S. Porechny, G. I. Feforova, "Limit model of electrochemical dimensional machining of metals", in *PMTF*, vol. 55, no. 4, pp. 718-725, 2014.]

7. Житников В. П., Зарипов А. А., Шерыхалина Н. М. Исследование нестационарного электрохимического формообразования с помощью квазистационарной модели // Вестник УГАТУ. 2014. Т. 18, №3 (64). С. 80–86. [V. P. Zhitnikov, A. A. Zaripov, N. M. Sherykhalina, "Investigation of nonstationary electrochemical shaping with the aid of quasistationary model" (in Russian), in *Vestnik UGATU*, vol. 16, no.3 (64), pp. 80-86, 2014.]

8. Zhitnikov V. P., Sherykhalina N. M., Porechny S. S. Stationary electrochemical machining simulation applying to pre cision technologies, in *Bulletin of the South Ural State University. Ser. Mathematical Modelling, Programming & Computer Software* (Bulletin SUSU MMCS, Chelyabinsk, Russia), 2017, vol. 10, no. 4, pp. 15–25.

9. Zhitnikov V. P., Sherykhalina N. M., Sokolova A. A. Problem of Reliability Justification of Computation Error Estimates, in *Mediterranean Journ. of Soc. Sci.*, 2015, Vol. 6, No. 2, pp. 65-78.

10. Житников В. П., Шерыхалина Н. М. Методы верификации математических моделей в условиях неопределенности // Вестник УГАТУ. 2000. № 2. С. 53–60. [V. P. Zhitnikov, N. M. Sherykhalina, "Methods of verification of mathematical models in conditions of inconfidence" (in Russian), in *Vestnik UGATU*, no. 2, pp. 53-60, 2000.]

11. Шерыхалина Н.М. Методы обработки результатов численного эксперимента для увеличения их точности и надежности // Вестник УГАТУ, 2007. Т. 9, № 2 (20). С. 127–137. [N. M. Sherykhalina, "Methods of processing of numerical experiment results for its accuracy and reliability increase" (in Russian), in *Vestnik UGATU*, vol. 9, no. 2 (20), pp. 127-137, 2007.]

ОБ АВТОРАХ

ЖИТНИКОВ Владимир Павлович, проф. каф. выч. мат. и кибернетики. Дипл. инж.-физ. (МФТИ, 1973). Д-р физ.-мат. наук по мех. жидкости, газа и плазмы (Казанск. ун-т, 1993). Засл. деят. науки РБ. Иссл. в обл. волн. течений жидкости, э/хим. формообразования, числ.-аналит. методов.

ШЕРЫХАЛИНА Наталия Михайловна, проф. каф. ВМиК. Дипл. инж.-системотехн. (УГАТУ, 1993). Д-р техн. наук по мат. моделированию, числ. методам и комплексам программ (УГАТУ 2012). Иссл. в обл. волновых течений жидкости, разработки числ.-аналит. методов, методов оценки погрешности и достоверности числ. результатов.

ЗАРИПОВ Аскар Александрович, научный сотрудник каф. выч. мат. и кибернетики. Дипл. магистр по прикладн. математике и информатике (УГАТУ, 2013). Иссл. в обл. решения задач матем. моделирования физ. процессов.

СОКОЛОВА Александра Алексеевна, аспирант каф. выч. мат. и кибернетики. Дипл. магистр по прикладн. математике и информатике (УГАТУ, 2014). Иссл. в обл. решения задач матем. моделирования физ. процессов.

METADATA

- **Title:** Limiting quasi-stationary solution of a problem of electrochemical copying of a cogged surface of different internal angle
- Authors: V. P. Zhitnikov¹, N. M. Sherykhalina², A. A. Zaripov³, A. A. Sokolova⁴

Affiliation:

Ufa State Aviation Technical University (UGATU), Russia.

Email: ¹zhitnik@mail.ru, ²n_sher @mail.ru, ³jacud@yandex.ru, ⁴alexandrakrasich@gmail.com

Language: Russian.

- Source: Vestnik UGATU (scientific journal of Ufa State Aviation Technical University), vol. 22, no. 3 (81), pp. 17-23, 2018. ISSN 2225-2789 (Online), ISSN 1992-6502 (Print).
- **Abstract:** We solve a problem of modeling of non-stationary electrochemical machining by an electrode-tool with cogged surface form of different angle. For modeling of process of anode dissolution we use the step function of a current efficiency. We find an exact (in quadratures) solution of a problem and obtain numerical results allowing to define a form of the processed surface in various moments of time.
- Key words: complex potential conformal mapping; current efficiency; limiting model; quasi-stationary approximation.

About authors:

- ZHITNIKOV, Vladimir Pavlovich, Prof., Dept. of computer science and robotics. Dipl. Engineer-physicist (Moscow Physical-Technical Inst., 1973). Cand. of Phys.-Math. Sci. (MIPT, 1984), Dr. of Phys.-Math. Sci. (KSU, 1993).
- SHERYKHALINA, Nataliya Mikhailovna, Prof., Dept. of computer science and robotics. Dipl. Engineer-system master (UGATU, 1993). Cand. of Phys.-Math. Sci. (BashGU, 1996), Dr. of Tech. Sci. (UGATU, 2012).
- **ZARIPOV, Askar Alexandrovich,** lower scientist, Dept. of computer science and robotics. Master's degree (UGATU, 2013).
- **SOKOLOVA, Alexandra Alekseevna,** postgraduate student. master's degree (UGATU, 2014). Dept. of computer science and robotics.