Вестник УГАМУ

МАШИНОСТРОЕНИЕ

УДК 669.295:539.4

С. В. Жеребцов, С. А. Костюченко, Е. А. Кудрявцев, Г. А. Салищев

МЕХАНИЧЕСКИЕ И ТЕХНОЛОГИЧЕСКИЕ СВОЙСТВА УЛЬТРАМЕЛКОЗЕРНИСТОГО ДВУХФАЗНОГО ТИТАНОВОГО СПЛАВА ВТ6, ПОЛУЧЕННОГО ВСЕСТОРОННЕЙ ИЗОТЕРМИЧЕСКОЙ ДЕФОРМАЦИЕЙ

Были изучены механические и технологические свойства двухфазного сплава с ультрамелкозернистой микроструктурой, полученной всесторонней изотермической деформацией. Установлено, что при комнатной температуре предел прочности и предел усталости ультрамелкозернистого материала на 16–33 % выше, чем у термоупрочненного сплава. Однако относительное удлинение при растяжении, ударная вязкость и характеристики трещиностойкости заметно снижаются с уменьшением размера зерен. Ультрамелкозернистая структура в сплаве BT6 позволяет осуществлять низкотемпературную сверпластическую формовку при 550 °C. Всестороння изотермическая деформация; ультрамелкозернистая структура; трещиностойкость; ударная вязкость; скорость роста усталостной трещины; вязкость разрушения; сверхпластичность

Двухфазный титановый сплав ВТ6 широко используется в авиастроении (в частности, для изготовления лопаток ГТД) из-за превосходной комбинации механических и технологических свойств. Снижение веса и габаритов изделий в случае значительного повышения механических свойств сплава может быть достигнуто измельчением микроструктуры до ультрамелкозернистого (УМЗ, *d* < 1 мкм) состояния [1, 2]. Объемные заготовки с УМЗ структурой могут быть получены методами, основанными на индеформационной обработке [1]. тенсивной в частности однородная структура с размером зерен менее 0,5 мкм в сплаве ВТ6 была достигнуты с использованием всесторонней изотермической деформации [3].

При этом ключевым для практического применения, но до сих пор еще слабоизученным остается вопрос о комплексе механических характеристик и границах применимости УМЗ титановых сплавов. Это особенно актуально, учитывая возможное применение сплава ВТ6 в качестве «лопаточного» материала. Хорошо известно, что прочность, твердость, устойчивость многоцикловой усталости и сверхпластические свойства улучшаются с уменьшением размера зерна [1, 2]. В то же время значительное микроструктуры измельчение приводит к уменьшению свойств, связанных с пластичностью и вязкостью (относительное удлинение, ударная вязкость, сопротивление распространению трещины) из-за низкой способности таких материалов к деформационному упрочнению [2]. Поэтому важно установить численные значения основных механических и технологических характеристик УМЗ сплава ВТ6. Таким образом, цель данной работы – изучить механические и технологические свойства двухфазного титанового сплава BT6 с УМЗ микроструктурой, полученного всесторонней изотермической деформацией.

МАТЕРИАЛ И ЭКСПЕРИМЕНТАЛЬНЫЙ МЕТОД

Использовался $\alpha + \beta$ титановый сплав ВТ6 состава: (в весовом проценте) 6.3 Al, 4.1 V, 0.18 Fe, 0.03 Zr, 0.01 C, 0.18 O, 0.01 N. Материал был поставлен в виде горячекатаного прутка \emptyset 40 мм; температура полиморфного превращения материала (при которой $\alpha + \beta \rightarrow \beta$) составляет 98 °C.

Ультрамелкозернистая микроструктура в сплаве была получена с помощью всесторонней изотермической деформации (ВИК), заключающейся в последовательной осадке и протяжки образца вдоль различных направлений [3].

Контактная информация: 8(472)258-54-16

Результаты представленных исследований получены в рамках проекта «Создание технологий и промышленного производства узлов и лопаток газотурбинных двигателей с облегченными высокопрочными конструкциями для авиационных двигателей новых поколений», реализуемого в рамках Федеральной целевой программы по Постановлению № 218 Правительства РФ от 9 апреля 2010 года совместно ОАО «УМПО» и ФГБОУ ВПО УГАТУ.

С. А. Костюченко выражает благодарность за финансовую поддержку ФЦП «Научные и научнопедагогические кадры инновационной России» на 2009–2013 годы, соглашение № 14.132.21.1590. Авторы выражают благодарность за финансовую поддержку программу ФЦП, ГК № 14.А18.21.0439

Исходное состояние перед ВИД было получено закалкой в воду из β -области (1010 С), при этом фиксировался α' -мартенсит. Размер α - и β -частиц после ВИД зависит (при прочих равных условиях) от температуры деформации [4]. Минимальная температура ВИД составляла 475 °С при скорости 10^{-3} с⁻¹, что дает размер α - и β -частиц около 150 нм. Также были получены состояния с размером зерна до 500 нм для того, чтобы найти оптимальное соотношение между размером зерен и свойствами.

Высокопрочное УМЗ состояние сравнивалось с обычным термически упрочненным микрокристаллическим (МК) состоянием. Термическая обработка для повышения прочности состояла из закалки в воду с температуры 945 °С и отжига в течение 3 ч при 500 °С.

Испытания на растяжение проводили при комнатной температуре с постоянной скоростью 1 мм/мин. Для испытания на растяжение использовали цилиндрические образцы с размером рабочей части \emptyset 3 × 18 мм, и плоские образцы с размером рабочей части 1,5 × 3 × 16 мм. Экспериментальные ошибки не превышали значений ±4,5 % для прочностных свойств и ±7 % для пластических свойств.

Ударную вязкость КСU, КСV и КСТ определяли с помощью метода Шарпи, используя образцы с размерами 10 мм × 10 мм × 55 мм.

Для повышения пластических свойств УМЗ сплав подвергали 2-этапному отжигу. Отжиг включал 1 ч выдержки при 550...600 °С с закалкой в воду, после чего каждый образец дополнительно выдерживается при 480 С в течение 2 ч. Первый этап был направлен на формирование стабильной субструктуры с пониженной плотностью дислокаций. Закалка в воду с температуры первого отжига фиксирует неравновесное состояние. При этом в ходе второго отжига можно было ожидать некоторый эффект старения в связи с формированием сегрегаций в границах зерен.

Микроструктура была исследована с помощью просвечивающего электронного микроскопа JEOL JEM-2100FX, и растрового электронного микроскопа FEI Quanta 600 FEG. Плотность дислокаций была измерена путем подсчета отдельных дислокаций внутри зерна/субзерна как минимум в шести отобранных произвольно изображениях ПЭМ для каждого образца при увеличении 150 тысяч раз.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Механические свойства УМЗ сплава ВТ6

Микроструктура сплава ВТ6 в УМЗ и МК состояниях показана на рис. 1. Микроструктура УМЗ сплава состоит из равноосных α - и β -частиц со средним размером зерна 300 нм (конечная температура деформации 550 °C) (рис. 1, *а*). МК состояние состоит из первичных α -частиц в превращенной β -матрице (рис. 1, δ). Размер α -частиц составляет около 6 мкм, а средний размер между соседними α -частицами составляет примерно 18 мкм. Микроструктура и свойства термоупрочненного сплава ВТ6 известны и обобщены в ряде публикаций [5, 6].

Влияние размера зерна на прочность и пластичность сплава, показано в табл. 1. Уменьшение размера зерна с 500 до 150 нм, приводит к значительному увеличению прочности и некоторому снижению общей пластичности. Сплав после ВИД при 475 °С (150 нм) показал максимальную прочность 1400 МПа, что соответствует самому высокому уровню прочности титановых сплавов [5, 6]. Однако снижение температуры ВИД связано с очевидными трудностями, вызванными низкой технологической пластичностью и очень высокой прочностью сплава. Деформация в интервале 550-600 °С (размер зерен 300-500 нм) также дает высокую прочность, которая все еще заметно выше, чем в МК состоянии (табл. 1).

Сопротивление усталостному разрушению сплава также существенно повышается при измельчении структуры. Значения σ_0 (для случая несимметричного цикла) составили 693 МПа для УМЗ состояния и 580 МПа для МК состояния (табл. 1).

Рис. 1. Микроструктура сплава ВТ6 в УМЗ (*a*) и МК(б) состоянии

Между тем общее удлинение и однородная деформация в УМЗ состоянии были довольно небольшими. Инженерные кривые напряжениедеформация УМЗ (размер зерен 300 нм) и МК состояний показаны на рис. 2, *а*. УМЗ сплав показывает меньшее и общее удлинение, и деформацию до образования шейки даже по сравнению с термоупрочненным МК состоянием.

В то же время, после локализации деформации (однородная деформация в УМЗ сплаве около 0,5 %), когда удлинение осуществляется только за счет деформации в шейке, образец показывает дополнительные ~6,5 % удлинения. Кроме того, относительное сужение УМЗ образца почти в два раза выше, чем для МК состояния: 60 и 32 % соответственно (рис. 2, б, табл. 1). Таким образом, при некоторых «мягких» схемах деформации (прокатка, сжатие) в УМЗ состоянии может проявляться достаточно высокая пластичность, тогда как увеличение доли растягивающего напряжения снижет пластические свойства.

Таблица 1 Механические свойства при растяжении УМЗ сплава Ti-6Al-4V

Состояние сплава (раз- мер зерна) / форма и размер рабочей части	σ _в , МПа	σ _{0,2} , МПа	δ, %	φ, %	σ ₀, МПа
МК (10 мкм) / цилинд- рический Ø3 мм	1050	960	9,0	32,0	580
УМЗ(150 нм) / плоский 1,5 × 3 мм	1400	1280	6,8		
УМЗ (300 нм) / цилин- дрический Ø3 мм	1300	1210	7,1	60,0	693
УМ3(500 нм) / цилинд- рический Ø5 мм	1220	1190	9,5	56,5	
				-	

Такое поведение характерно для всех УМЗ материалов независимо от метода получения структуры и связано с низкой способностью к деформационному упрочнению [1, 2]. Другое проявление локализации деформации в УМЗ материалах связано с уменьшением пластической зоны перед вершиной трещины [7, 8]. Очевидно, что размер пластической зоны в вершине трещины зависит от размера зерен. Когда зерно равно или меньше пластической зоны, распространение пластической деформации связано с передачей напряжения через границу зерна. Поэтому наличие границ вблизи вершины трещины ограничивает объем пластической зоны, снижая тем самым энергию распространения трещины [8].

Эти предположения хорошо иллюстрируются результатами ударных испытаний образцов сплава с УМЗ и МК микроструктурами. Значения ударной вязкости, полученные на образцах с различными видами концентраторов (U-образный (KCU), V-образный (KCV) и с введенной усталостной трещиной (КСТ)) ожидаемо показывают, что увеличение остроты надреза снижают величину ударной вязкости. Однако если в МК состоянии при переходе от закругленного И-образного надреза к очень острому концентратору (радиус вершины усталостной трещины сравним с межатомным расстоянием) ударная вязкость уменьшается менее чем в 2 раза, то в УМЗ сплаве подобное изменение остроты надреза снижает ударную вязкость более чем в 4,5 раза. Когда для разрушения образца требуется сначала сформировать трещину, как в случае с U-образным надрезом, значения усталостной вязкости образцов для обоих состояний сплава находятся в пределах требований к авиационным титановым сплавам (КСИ более 0,3). Однако, когда трещина уже сформирована и вся энергия затрачивается лишь на ее распространение, ударная вязкость УМЗ образца очень сильно уменьшается.

Рис. 2. Инженерная кривая (*a*) и зависимость истинного напряжения течения от истинного сужения (*б*) при испытаниях на растяжение при комнатной температуре сплава BT6 в УМЗ и МК состояниях

Действительно, вязкость разрушения в УМЗ состоянии составляет 30,5 МПа \sqrt{M} (рис. 3, *a*), что несколько ниже, чем типичные значения для этого сплава (33–110 МПа \sqrt{M} [5]). Однако из представленных данных видно, что и вязкость разрушения и СРТУ (рис. 3, δ) УМЗ состояния следует общей тенденции снижения характеристик трещиностойкости с увеличением прочности. При этом абсолютные величины вязкости разрушения и СРТУ вполне сравнимы с типичными высокопрочными состояниями сплава.

Таблица 2 Ударная вязкость сплава ВТ6 в различных состояниях

2 pustii ii	2111 00010					
Состояние	Ударная вязкость, МДж/м ²					
	KCU	KCV	KCT			
УМЗ(500нм)						
УМЗ(500нм) + отжиг	0,37	0,18	0,08			
625/650 °С 1 ч	-	_	0,12/0,17			
МК(10 мкм) термоуп-	0,45	0,41	0,24			
рочненное						
К₁с,МПа√м						
120 3						
100-	\times^4					
80 - 2	11.	8,9	9			
60 -	7.		-			
40 -		6	$\langle \rangle$			
20 -		УМЗ стр	уктура			
600 800	1000	1200	σ _{ез} , МПа			
10.0	а					
10-3	0	·.				
БУ 10-4 ИТ 0000	0 ⁰ 0 ⁰ 0 ⁰					
WW 105 000						
	о УМЗ (d=0.5мкм) ——— Равноосная, d=2мкм ——— Равноосная, d=12мкм Грубопластинчатая					
7 8 9 10	20	30				
∆К, МПа м ^{1/2}						
б						

Рис. 3. Вязкость разрушения (а) и СРТУ (б) сплава ВТ6 с УМЗ в сравнении с литературными данными [9]. В (а) под номером 1 приведены значения вязкости разрушения сплава ВТ6 в термоупрочненном состоянии (типичная кривая)

Наиболее очевидный способ увеличить область пластической деформации в вершине трещины и тем самым повысить работу, затрачиваемую на продвижение трещины, связан с отжигом материала, который бы снимал внутренние напряжения, не приводя к росту зерен. Действительно, отжиг УМЗ сплава ВТ6 при температуре 620 / 650 °C в течение 1 часа увеличивает КСТ в 2 раза (табл. 2).

Испытания на длительную прочность при температуре 300 °C за время 100 часов для двух состояний сплава УМЗ и МК показали, что, несмотря на полученные данные о снижении предела ползучести в УМЗ состоянии при повышении температуры с 250 до 350 °C [10], его длительная прочность при этой температуре 865 МПа оказалась выше, чем в МК образце – 710 МПа.

Технологические свойства УМЗ титанового сплава ВТ6

В настоящее время в промышленности широкое распространение получили процессы на основе сверхпластичности (СП). Для определения оптимальных температурно-скоростных интервалов низкотемпературной СП были произведены механические испытания сплава ВТ6 с размером зерен 150 нм, по результатам которых были построены температурные и скоростные зависимости напряжения течения σ , коэффициента скоростной чувствительности *m*, относительного удлинения δ (рис. 4).

Представленные результаты показывают, что минимальная температура проявления эффекта СП составляет 550 °С, что существенно (примерно на 350 °C) ниже температур СП формовки, используемых в промышленности. Следует отметить, что найденная минимальная температура в среднем на 50-100 °С ниже, чем в аналогичных работах, при том, что полученное в данной работе удлинение существенно больше: 1000 % при 550 °С при скорости деформации 2×10^{-4} с⁻¹ (рис. 4, б), тогда как, например, в работе [11] при 600 °С лишь 215 % при меньшей скорости деформации $1 \times 10^{-4} \text{ c}^{-1}$. Величина коэффициента скоростной чувствительности *т* в нашем случае достигла 0,49 (рис. 4, б), что позволило считать оптимальными следующие условиями низкотемпературной СП: скорость 2×10^{-4} с⁻¹ при температуре 550 °C.

Таким образом, создание УМЗ структуры в сплаве ВТ6 дает возможность реализовать низкотемпературную СП формовку при 550 °С. Сверхпластическая формовка при столь низкой температуре позволяет сохранять высокий уровень прочностных и пластических характеристик в отформованных деталях с УМЗ структурой.

Рис. 4. Механические свойства УМЗ сплава ВТ6 при СП деформации: a – температурная зависимость напряжения течения и относительного удлинения построенная при скорости деформации $5 \times 10^{-4} \text{ c}^{-1}$; δ – Скоростная зависимость, построенная при T = 550 °C

выводы

Были изучены механические свойства двухфазного ВТ6 сплава в УМЗ состоянии, полученные в результате ВИД и в термоупрочненном состоянии. Было установлено, что прочность УМЗ состояния на 33 %, чем в МК состоянии (1400МПа и 1050МПа соответственно). Однако пластичность и связанные с ней свойства, в том числе относительное удлинение при растяжении, ударная вязкость и трещиностойкость понизились с уменьшением размера зерна. Любое заметное увеличение пластичности, связанное с отжигом, сопровождается разупрочнением материала по сравнению с термоупрочненным МС состоянием. Также в материале с УМЗ структурой наблюдается низкотемпературная сверхпластичность, оптимальное условие протекания которой: T = 500 °C, скорость деформации 2×10^{-4} с⁻¹, что дает возможность сохранять высокий уровень прочностных и пластических характеристик в отформованных деталях.

СПИСОК ЛИТЕРАТУРЫ

1. Валиев Р. З., Александров И. В. Объемные наноструктурные металлические материалы: получение, структура и свойства. М.: ИКЦ «Академкнига», 2007. 398 с.

2. **Meyers M. A., Mishra A., Benson D. J.** Mechanical properties of nanocrystalline materials // Progr. Mater. Sci., 2006. 51. P. 427–556.

3. Production of submicrocrystalline structure in largescale Ti-6Al-4V billet by warm severe deformation processing / S. V. Zherebtsov [et al.] // Scripta Mater. 2004. Vol. 51. P. 1147–1151.

4. Формирование субмикрокристаллической структуры в титане и титановых сплавах и их механические свойства / Г. А. Салищев [и др.] // МиТОМ, 2006. № 2. С. 19–26.

5. Leyens C., Peters M. (Eds.) Titanium and Titanium Alloys. Fundamentals and Applications, Wiley-VCH Verlag GmbH, Weinheim, 2003.

6. Lutjering G., Williams J. C. Titanium, Springer-Verlag, Berlin/Heidelberg, 2007.

7. **Rabinovich M. Kh., Markushev M. V**. Influence of fine-grained structure and superplastic deformation on the strength of aluminium alloys // J. Mater. Sci. 1996. Vol. 31. P. 4997–5001.

8. **Meyers M. A., Chawa K. K.** Mechanical Behavior of Materials. Cambridge University Press, New York, 2009.

9. **Ильин А. А., Колачев Б. А., Полькин И. С.** Титановые сплавы. Состав, структура, свойства. Справочник. М.:ВИЛС-МАТИ, 2009. 520 с.

10. Mechanical properties of Ti-6Al-4V titanium alloy with submicrocrystalline structure / S. Zherebtsov [et al.] // Mater. Trans. 2005. Vol. 46, 9. P. 2020–2025.

11. Low-Temperature Superplasticity of Ultra-Fine-Grained Ti-6Al-4V Processed by Equal-Channel Angular Pressing / Y. G. Ko [et al.] // Metall. Mater. Trans. A, Vol. 37A (2006). P. 391–405.

ОБ АВТОРАХ

Жеребцов Сергей Валерьевич, доц. каф. материаловедения и нанотехнологий, ст. науч. сотр. лаб. объемн. наноструктурн. материалов ФГАОУ ВПО НИУ «БелГУ». Дипл. инженер-механик (УГАТУ, 1995). Канд. техн. наук. Иссл. в обл. деформационной и термическ. обработки металлов и сплавов, эволюции структуры и механическ. поведения металлическ. материалов в процессе больших пластических деформаций.

Салищев Геннадий Алексеевич, проф. той же каф. рук. той же лаб. Д-р техн. наук. Иссл. в обл. деформационной и термическ. обработки металлов и сплавов, эволюции структуры и механическ. поведения металлических материалов в процессе деформации до больших степеней.

Костюченко Сергей Александрович, асп. ФГАОУ ВПО НИУ «БелГУ». Иссл. в обл. деформационной и термическ. обработки металлов и сплавов, повышения пластическ. характеристик высокопрочных титановых сплавов.

Кудрявцев Егор Алексеевич, асп. ФГАОУ ВПО НИУ «БелГУ». Иссл. в обл. деформационной и термическ. обработки металлов и сплавов, низкотемпературн. сверхпластичности титановых сплавов.