Вестник УГАМУ

МАШИНОСТРОЕНИЕ

УДК 669.295:620.179

# А. А. Гирфанова, В. В. Астанин, И. В. Александров, Ф. Ф. Мусин

# АНАЛИЗ И АТТЕСТАЦИЯ ДЕТАЛЕЙ ГТД ИЗ ТИТАНОВОГО СПЛАВА С УЛЬТРАМЕЛКОЗЕРНИСТОЙ СТРУКТУРОЙ УЛЬТРАЗВУКОВЫМ МЕТОДОМ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ

В настоящей работе оценивались возможности применения ультразвукового метода неразрушающего контроля для исследования наличия и локаций внутренних дефектов в ультрамелкозенистой заготовке из титанового сплава ВТ6 после интенсивной пластической деформации, реализованной методами осадки с переменой оси приложения нагрузки. *Неразрушающий контроль; ультразвуковой метод; ультрамелкозернистая структура; интенсивная пластическая деформация; ISONIC 2010; УД2-70* 

Надежность авиационной и космической техники складывается из многих составляющих, объединяющих большое количество научных направлений исследований в разных областях знаний. Одним из научных направлений исследований, наиболее полно востребованных в авиационной и космической отраслях промышленности, являются неразрушающие методы контроля (НМК) [1]. Применение титановых сплавов с ультрамелкозернистой (УМЗ) структурой для рабочих лопаток компрессора рассматривается в качестве одного из перспективных направлений, которое направлено на повышение прочностных свойств изделий, снижение технологической температуры и объемов лезвийной обработки [2]. Получают УМЗ структуры в титановых сплавах методами интенсивной пластической деформации (ИПД). В частности, для сплава ВТ6 применяют ИПД при температурах 750...550 °С, что приводит к размеру зерен 500...120 нм соответственно, но при этом возрастает опасность появления трещин и других дефектов деформационного происхождения. В этой связи возникает необходимость тщательного неразрушающего контроля заготовок после ИПД.

Методы неразрушающего контроля выбираются исходя из характерных физических свойств титановых сплавов и типов дефектов [3]. Грубые наружные дефекты продукции, обработанной давлением (вмятины, рванины, некоторые риски, плены, заковы [4]), выявляют визуально. Более тонкие дефекты того же типа обнаруживают методами поверхностной дефектоскопии: капиллярным [5], вихретоковым [6]. Сформированные при деформации внутренние дефекты надежнее всего могут быть обнаружены ультразвуковыми методами [7].

Так, целью данной работы является исследование ультразвуковым методом наличия и локаций внутренних дефектов в УМЗ заготовке из титанового сплава ВТ6 после ИПД, реализованной методами осадки с переменой оси приложения нагрузки.

#### МАТЕРИАЛЫ И МЕТОДИКИ ИССЛЕДОВАНИЯ

Осадка с переменой оси нагружения проводилась на гидравлическом прессе ДГ2434 с изотермическим штамповым блоком УИШБ-250 с плоскими бойками при температуре 550 °C. В результате были получены образцы размером  $14 \times 30 \times 95$  мм<sup>3</sup> (рис. 1).

Для проведения неразрушающего ультразвукового контроля использовали дефектоскопы ISONIC 2010 и УД2-70. Дефектоскоп ISONIC 2010 сочетает в себе технологию фазированных решеток (ФР) с возможностями работы со стандартными преобразователями и модальностью ТОFD, обеспечивающую запись и отображение

Контактная информация: 8-919-614-73-18

Работа выполнена в рамках проекта «Создание технологий и промышленного производства узлов и лопаток ГТД с облегченными высокопрочными конструкциями для авиационных двигателей новых поколений» (шифр 2010-218-01-133) в рамках реализации Постановления № 218 Правительства РФ от 9.04.2010 г. «О мерах государственной поддержки развития кооперации российских высших учебных заведений и организаций, реализующих комплексные проекты по созданию высокотехнологичного производства». Экспериментальные результаты были получены с использованием оборудования НОЦ «Наноструктурные материалы и высокие технологии» ФГБОУ ВПО УГАТУ.

100 % исходных данных. Дефектоскоп ISONIC 2010 с наклонным пьезоэлектронным преобразователем с ФР позволяет выявить дефекты, расположение которых близко к вертикальному (рис. 2, *a*). При этом осуществляется два прохода датчика вдоль горизонтальной поверхности образца.



Рис. 1. Внешний вид заготовки



**Рис. 2.** Схема проведения ультразвукового контроля дефектоскопом: *a* – ISONIC2010; *δ* – УД2-70

Для выявления дефектов, расположение которых близко к горизонтальному по отношению к поверхности проведения контроля, использовали дефектоскоп УД2-70 с прямым контактным преобразователем (рис. 2,  $\delta$ ).

## АНАЛИЗ ПОЛУЧЕННЫХ РЕЗУЛЬТАТОВ

В процессе исследования заготовки было обнаружено множество дефектов, образовавшихся после ИПД. С помощью металлографического анализа были выявлены дефекты, выходящие на поверхность исследуемой заготовки, такие как волосовины, заковы (рис. 3, a), а также внутренние дефекты, такие как цепочки пор (рис. 3,  $\delta$ ).

Исследуя заготовку с помощью дефектоскопа ISONIC2010, получили серию изображений в виде 3D-моделей. Полученные данные позволили оценить размеры и местоположение дефектов, используя один наклонный ПЭП.

Данные, полученные дефектоскопом ISONIC2010, приведены на рис. 3.



Рис. 3. Дефекты заготовки



Рис. 4. 3D-модель, полученная с помощью дефектоскопа ISONIC 2010

Как видно из рис. 4, a, в заготовке присутствуют дефекты, наиболее крупные из них, выходят на поверхность образца, что, естественно, недопустимо для заготовки. При втором проходе датчика были получены сигналы, характерные кромке заготовки (рис. 4,  $\delta$ ).

При проведении контроля заготовки с помощью дефектоскопа УД2-70 получили ряд изображений отраженных сигналов, пример которых представлен на рис. 5.

Из полученных изображений, отраженных от дефектов эхо-сигналов заготовки и от ее нижней поверхности (донный сигнал), можно сделать вывод о том, что в заготовке присутствуют дефекты, находящиеся на глубине 15 мм от исследуемой поверхности. Амплитуды донного и эхо-сигнала от дефекта соотносятся как 1:8 дБ. Из соотношения этих сигналов можно заключить, что дефект занимает небольшую площадь заготовки, которая не препятствует распространению ультразвуковой волны.



**Рис. 5.** Изображения отраженных сигналов, полученные дефектоскопом УД2-70

Таким образом видно, что дефекты имеют большие геометрические размеры (расположенные на площади  $10 \times 5$  мм) в направлении, перпендикулярном исследованной поверхности и маленькие размеры в горизонтальном направлении (цепочки пор).

Сопоставляя данные УЗД и металлографического исследования заготовки, можно сказать о том, что выявленные методом УЗД дефекты, находятся на глубине залегания 15 мм от боковых поверхностей заготовки. По своей природе они являются закованными трещинами, которые образовались на одном из переходов осадки с переменой оси нагружения. На основе металлографического исследования, несплошность, выявленная дефектоскопом ISONIC2010 (рис. 4, *а*), была определена, как волосовина (рис. 6), являющаяся результатом деформации неметаллических включений и газовых пузырей. Протяженность дефекта составляет 20 мм.



Рис. 6. Дефект волосовина

#### выводы

Таким образом, комбинированное применение дефектоскопа ISONIC2010 с преобразователем с фазированной решеткой и дефектоскопа УД2-70 с преобразователем прямого типа, позволяет не только выявить, но и идентифицировать дефекты, образовавшиеся в материале заготовки вследствие ИПД. По результатам исследования данной заготовки был сделан вывод, что метод ультразвукового неразрушающего контроля применим к лопаткам с ультрамелкозернистой структурой для компрессора ГТД.

#### СПИСОК ЛИТЕРАТУРЫ

1. Морозов Г. А., Степанов А. В. Современные методы неразрушающего контроля жаропрочных сплавов и изделий из них // Научные идеи С. Т. Кишкина и современное материаловедение: тр. международн. науч.-техн. конф. М.: ВИАМ, 2006. 378 с.

2. Павлинич С. П. К вопросу о применении наноструктурных материалов для лопаток компрессора стационарных ГТД, работающих в условиях больших ресурсов // Прикладные академические исследования. 2006. Т. 4, № 1. С. 197–200.

3. Борисова Е. А., Бочвар Г. А., Брун М. Я. Титановые сплавы. Металлография титановых сплавов. М.: Металлургия, 1980.

4. ГОСТ 21014-88. Термины и определения дефектов поверхности.

5. Кацура А. В., Лавренов Вл. А., Рябин А. А. Применение методов неразрушающего контроля для выявления коррозионных поражений элементов конструкций летательных аппаратов // Вестник Сибирск. гос. аэрокосмическ. ун-та им. академика М. Ф. Решетнева. 2011. № 1. С. 101–104.

6. Макаров А. В., Горкунов Э. С., Коган Л. Х. Применение вихретокового меотда для оценки износостойкости титанового сплава ВТ35, легированного водородом // Дефектоскопия. 2007. № 1. С. 27–33.

7. Сударикова Е. В. Неразрушающий контроль в производстве: учеб. пособие. Ч. 1.; ГУАП. СПб., 2007. 137 с.

## ОБ АВТОРАХ

Гирфанова Айгуль Айдаровна, инженер Науч.образовательн. центра «Наноструктурные материалы и высокие технологии». Дипл. магистр техники и технологии по материаловедению и технологии новых материалов (УГАТУ, 2012). Иссл. в обл. неразрушающего контроля.

Астанин Владимир Васильевич, проф. каф. материаловедения и физики металлов. Дипл. инженер по машинам и технологии обработки металлов давлением (УАИ, 1973). Д-р физ.-мат. наук (Московск. ин-т сталей и сплавов, 1996). Иссл. в обл. пластической и сверхпластической деформации.

Александров Игорь Васильевич, проф., гл. науч. сотр., зав. каф. физики. Дипл. физик (БГУ, 1976). Д-р физ.-мат. наук по физике твердого тела (ИФМ УрНЦ РАН, 1997). Иссл. в обл. физики прочности и пластичности материалов.

Мусин Фаниль Фанусович, доц. каф. материаловедения и физики металлов, техн. директор НОЦ «Наноструктурные материалы и высокие технологии». Дипл. спец. по машинам и технологиям обработки металлов давлением (УГАТУ, 1988). Канд. физ.-мат. наук (ИПСМ РАН, 1994). Иссл. в обл. материаловедения алюминиевых, титановых сплавов и сталей.