Вестник УГА

МАШИНОСТРОЕНИЕ

УДК 621.791

В. В. Атрощенко, В. М. Бычков, Р. В. Никифоров, А. Н. Паутов, А. А. Логоня

ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ФОРМЫ ПРОПЛАВЛЕНИЯ ПРИ АРГОНОДУГОВОЙ СВАРКЕ НЕПЛАВЯЩИМСЯ ЭЛЕКТРОДОМ НА МЕДНОЙ ПОДКЛАДКЕ

Статья посвящена определению влияния теплоотвода в медную подкладку на размеры ширины шва при аргонно-дуговой сварке тонколистовых материалов и разработке методики построение численных моделей расчетов теплового поля с применением экспериментально полученных поправочных коэффициентов. Дуговая сварка; численное моделирование; теплопередача в подкладку; контактное термическое сопротивление; измерение температуры термопарами

В настоящее время в связи с увеличением количества данных в области сварки, полученных в результате научных исследований и производственного опыта, возникает необходимость обобщения этих данных в виде закономерностей, которые могли бы использоваться в сварочных компьютеризированных автоматах, а также служить справочным материалом для широкого круга специалистов. Однако моделирование сварки встык тонколистовых материалов на медной подкладке сопряжено с некоторыми трудностями, поскольку имеет место значительный теплоотвод в подкладку, достаточно точно определить величину которого без экспериментов невозможно.

Для получения расчетной модели с экспериментальными коэффициентами, описывающей реальное влияние теплоотвода на ширину стыкового шва при аргонно-дуговой сварке на медной подкладке проводилось сравнение расчетного поля температуры, полученного при численном моделировании, с экспериментально измеренными значениями температуры.

Для описания температурного поля T(x, y, z, t) в плоском образце размером $50 \times 100 \times 2$ мм использовали дифференциальное нелинейное уравнение теплопроводности:

$$c(T)\rho(T)\frac{\partial T}{\partial t} = \lambda(T) \left[\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right], \qquad (1)$$

где $\rho(T)$ – плотность, кг/м³; $\lambda(T)$ – коэффициент теплопроводности, Вт/(мхК); с(T) – удельная теплоемкость, Дж/(кг·°С). Зависимость теплофизических свойств стали от температуры $\rho(T)$, $\lambda(T)$, с(T) принимали согласно литературным данным [1]. В использованной нами расчетной схеме сквозного проплавления тепловая мощность сварочной дуги для одной из свариваемых пластин частично вводится через ее боковую поверхность в плоскости стыка, а частично – через верхнюю поверхность пластины. Изотермы температуры плавления от движущихся распределенного и сосредоточенного источников имитируют поверхность солидуса сварочной ванны $T_s(x, y, z) = T_s$.

Линейный тепловой источник был задан как тепловой поток через плоскость, которая разделяет образец на 2 части (рис. 1) по формуле [2]:

$$q(x,t) = \frac{q_1}{4ah\sqrt{\pi}} \exp^{-(\frac{\Delta X}{a})^2},$$
 (2)

где a – размер конечного элемента, м; h – толщина стали, м; $\Delta X = X_0 - V$ ·ТІМЕ – перемещение по оси X.

Нормально-круговой источник нагрева на верхней поверхности рассчитывался по формуле [2]:

$$q(x, y, t) = \frac{k}{\pi} q_2 \exp^{(-k(\Delta X^2 + Y^2))},$$
 (3)

где k – коэффициент сосредоточенности дуги, M^{-2} .

Граничные условия теплопередачи с внешних поверхностей определяли удельный тепловой поток при конвекции и излучении. Радиационное излучение учитывалось только на поверхности *A* и рассчитывалось по формуле:

$$q_{2r} = \varepsilon C_0 (T^4 - T_c^4), \tag{4}$$

где *T* – температура тела; T_c – температура окружающей среды (20 °C); C_0 – постоянная Стефана–Больцмана $C_0 = 5,67 \cdot 10^{-8}$ Вт/(м²·K⁴); ε – излучательная способность стали, которую принимали согласно данным работы [3].

Контактная информация: 8-937-340-30-76

Удельный тепловой поток при конвективном теплообмене принимали равным $q_{2k} = 25 \text{ BT/}(\text{m}^2 \cdot \text{K})$ по данным работы [3] для свободных поверхностей кроме A, B и D, как показано на рис. 1.

Рис. 1. Расчетная схема модели

Граничные условия контакта сталь-медь рассматривались как сумма термических проводимостей воздушной прослойки $\alpha_{воз}$ между микровыступами контактируемых материалов и металлического контакта α_M , для расчета которых использовали методику из справочника [4].

Термическая проводимость воздушной прослойки описывается выражением:

$$\alpha_{_{603}} = \frac{2\lambda_{_{B03}}}{h_{_{\mathrm{Megb}}} + h_{_{\mathrm{cranb}}}} = 1,02 \cdot 10^4 \,\frac{\mathrm{Br}}{\mathrm{M}^2 \cdot \mathrm{rpag}},\qquad(5)$$

где λ_{BO3} – теплопроводность воздуха, Вт/(м · °C); h_{Medb} – микронеровность поверхности медной подкладки, мкм; h_{CTAJL} – микронеровность поверхности стали, мкм.

Величина микронеровностей поверхности свариваемого образца из листовой стали 12Х18Н10Т в состоянии поставки и медной подкладки определяли с помощью портативного измерителя шероховатости TR 100. Величина микронеровностей Ra на поверхности стали $h_{\text{Steel}} = 0,54-0,72$ мкм (для расчетов приняли 0,66 мкм), а на поверхности меди $h_{\text{Cu}} = 2,1-$ 3,61 мкм (приняли 2,90 мкм). Зависимость $\lambda(T)$ воздуха принимали по данным работы [4].

Для вычисления коэффициента, учитывающего площадь фактического контакта стального образца и медной подкладки воспользовались выражением, приведенным в справочнике [4]:

$$S_{\phi} = \frac{P}{H},\tag{6}$$

где P – давление на образец, кг/см²; H – твердость материала по Бринеллю, кг/см².

Для расчета этого коэффициента использовали экспериментально измеренное давление прижимов P = 9,85 кг/см² и данные по твердости меди М1 из марочника [1]. В нашем случае получили для металлического контакта $S_{\phi} = 0,12$, и поскольку эта величина относительно мала, то в соответствие с методикой [4], можно заключить, что термическая проводимость контакта приближенно может быть рассчитана только по значению $\alpha_{воз}$.

Поскольку теплопроводность воздуха зависит от температуры, для расчета была использована линейная зависимость, полученная аппроксимацией табличных данных в программе STATISTICA в виде выражения:

$$\alpha(T) = 10200 + 32T.$$
(7)

Эффективный КПД сварочной дуги определяли методом калориметрирования в стоячей воде по формуле:

$$\eta_{\rm sop} = \frac{cm\Delta T}{UIt_{\rm cB}},\tag{8}$$

где *с* – теплоемкость воды, Дж/(кг[•]°С); *m* – масса воды, кг; ΔT – перепад температур при калориметрировании, °С; *U* – напряжение на дуге, В; *I* – сила тока, А; *t*_{св} – время сварки, с.

Режимы сварки образцов и полученные при этом значения эффективного КПД приведены в табл. 1.

Сварка проводилась на образцах из нержавеющей стали 12Х18Н10Т размерами 100×50х2 мм на стенде, приведенном на рис. 2. При сварке на всех режимах использовали вольфрамовые электроды WL-20 диаметром 3 мм с углом заточки 30°, длина дуги 3 мм.

Температурное поле определялось численным решением задачи нелинейной теплопроводности, пример расчета которой приведен на рис. 3. для режима (∂): I = 115 A, V = 12 м/ч, l = 3 мм.

Режим	Сила тока, А	Скорость сварки, м/ч	Напряжение на дуге	Эффективный КПД, %	Коэффициент сосредоточенности дуги k, см ⁻²
(a)		10	9,61	65,0	15,5
(б)	90	11	9,32	68,0	13,5
(B)		12	9,61	71,0	9,3
(г)	115	10	9,92	60,0	11
(д)		12	10,10	61,0	12
(ж)		15	10,27	64,0	11,3
(3)		18	10,31	65,0	10,5
(и)		16	11,11	67,0	8,5
(к)	140	19	11,01	67,0	6,4
(л)	140	22	10,87	70,0	5,9
(м)		25	10,55	71,0	6,7
(H)	160	18	10,95	62,0	7,2
(0)		20	11,10	63,0	6,8
(п)		23	11,27	65,0	7,2
(p)		26	11,36	65,0	5,6

Данные по режимам сварки и коэффициенты модели

Рис. 3. Пример расчета в пакете ANSYS/ Multiphysics: *a* – распределение изотерм проплавления по лицевой части сварного шва; *б* – распределение изотерм проплавления по обратной части сварного шва.

Мощность источников нагрева и коэффициент сосредоточенности дуги подбирались по следующему алгоритму – вначале по полуширине обратного валика подбиралась эффективная мощность линейного источника нагрева, после чего – по полуширине сварного шва выбирался коэффициент сосредоточенности дуги для нормально-кругового источника нагрева. В результате моделирования было установлено, что мощность линейного источника нагрева должна составлять 1/5 от общей мощности для того, чтобы ширина шва с лицевой и обратной стороны соответствовала экспериментальным данным.

Проверка расчетной методики определения проводимости теплового контакта осуществлялась путем записи термических циклов с термопар в медной подкладке, установленных в соответствии с рис. 4 и последующим их сравнением с термическими циклами узлов конечноэлементной сетки медной подкладки при расчете контактной тепловой задачи. При этом термопары типа «К» зачеканивали в медную пластину на глубину $1,5 \pm 0,5$ мм и заливали термостойким герметиком.

Таблица 1

Рис. 4. Схема установки термопар в медную подкладку

Термические циклы снимались с помощью цифрового 4-канального измерителя температуры CENTER 309. На рис. 5 представлены термический цикл режима (*д*).

Рис. 5. Термический цикл режима (*д*) в соответствии с табл. 1

На каждом из приведенных режимов сваривалось по 3 образца. Лицевую ширину сварного шва и ширину обратного валика фотографировали и обмеряли по 5 точкам с интервалом 8 мм в программе КОМПАС. Провисание сварного шва измерялось с помощью сконструированного приспособления рис. 6, *а*, в качестве измерительного прибора которого выступал индикатор перемещения часового типа НЧ-4. Экспериментальные данные параметров сварных швов обрабатывались в программе STATISTICA с выборкой по медиане с квантилями .25 и .75.

Полученные в результате моделирования значения коэффициентов сосредоточенности дуги линейно аппроксимировали в среде пакета MathCad, конечные формулы для вычисления параметров шва представлены в табл. 2.

Рис. 6. Приспособление для измерения высоты обратного валика сварного шва (*a*) и измерение размеров сварного шва (б)

Таблица 2

Формулы для определения параметров сварного шва

Сила тока, А	Диапазон скоростей сварки V, м/ч	Ширина шва <i>b</i> , мм	Ширина обратного валика от погонной энергии (q, Дж/м), b ₁
90	10–12	b = 8,78 - 0,034V	$b_1 = -7,65 + 750q$
115	10–18	b = 6,66 - 0,068V	$b_1 = -0,25 + 292,3q$
140	16–25	<i>b</i> = 7,87– 0,113 <i>V</i>	$b_1 = -4,59 + 564,2q$
160	18–26	b = 9,86 - 0,172V	$b_1 = -5,21 + 636,9q$

Таким образом, данная методика позволяет получить формулы для расчета параметров сварного шва при аргонодуговой сварке неплавящимся электродом на медной подкладке заданной формы, основываясь на численном решении уравнения теплопроводности в пакете ANSYS/Multiphysics в результате введения поправочных коэффициентов, полученных экспериментально.

выводы

1. Для получения расчетной модели, адекватно описывающей влияние теплоотвода на ширину стыкового шва при аргонно-дуговой сварке на медной подкладке необходимо введение экспериментально полученных коэффициентов контактной теплопроводности между свариваемыми листами и подкладкой.

2. Полученные формулы позволяют вычислить лицевую ширину шва и ширину обратного валика шва в диапазоне режимов сварки, обеспечивающих бездефектное формирование сварного шва в соответствие с ГОСТом 14771-76 «Сварка в защитных газах» типа соединения С4, с точностью 5-7%.

СПИСОК ЛИТЕРАТУРЫ

1. Сорокин В. Г., Гервасьева М. А.: Стали и сплавы. Марочник. М.: Интермет Инжиниринг, 2001. 608 с.

2. **Рыкалин Н. Н.** Расчеты тепловых процессов при сварке. М.: Машиностроительная литература, 1951. 291 с.

3. Шейндлин А. Е. Излучательные свойства твердых материалов. М.: Энергия, 1974. 472 с.

4. Шлыков Ю. П., Ганин Е. А., Царевский С. Н.. Контактное термическое сопротивление. М.: Энергия, 1977. 328 с.

ОБ АВТОРАХ

Атрощенко Валерий Владимирович, проф., зав. каф. оборудования и технологии сварочн. производства. Дипл. инженер-электромеханик (УАИ, 1974). Д-р техн. наук по автоматизации техн. процессов прва (Ленинградск. электротехн. ин-т, 1991).

Бычков Владимир Михайлович, доц. той же каф. Канд. техн. наук по моделированию процессов сварки (УГАТУ, 1980). Иссл. в обл. физ. и технологическ. аспектов дуговой сварки и линейной сварки трением.

Никифоров Роман Валентинович, асп. той же каф. Иссл. в обл. физ. и технологическ. аспектов дуговой сварки и линейной сварки трением.

Паутов Анатолий Николаевич, студ. той же каф. Иссл. в обл. аргонодуговой и электронно-лучевой сварок.

Логоня Артем Алексеевич, студ. той же каф. Иссл. в обл. аргонодуговой и электронно-лучевой сварок.