МАШИНОСТРОЕНИЕ • ГИДРАВЛИЧЕСКИЕ МАШИНЫ, ГИДРОПНЕВМОАГРЕГАТЫ

УДК 621.643.43

В. К. ИТБАЕВ, Б. И. СКУРАТОВ, В. А. ФЕДОРОВ, Н. А. ЯНСИТОВА

ИССЛЕДОВАНИЕ ПРЕДЕЛЬНЫХ СОСТОЯНИЙ СИЛЬФОННЫХ КОМПЕНСАТОРОВ В УСЛОВИЯХ КРИОГЕННЫХ ТЕМПЕРАТУР

Приведена методика и результаты расчета предельных состояний многослойных сильфонных компенсаторов, предназначенных для трубопроводных систем криогенной техники. Слои сильфонов компенсаторов выполнены из разных материалов и с различным сочетанием слоев. Использованы предельные состояния по общей и местной потере устойчивости сильфона, по циклопрочности сильфонов, по резонансным колебаниям гофров, возбуждаемых потоком рабочей среды. Сильфон ; сильфонные компенсаторы; гофр; деформационно-кинетический критерий; параметр Ларсена–Миллера; критические скорости потока; срыв вихрей; резонанс

В трубопроводных системах, по которым транспортируются криогенные продукты неизбежно приходится использовать компенсирующие устройства в виде сильфонов, сильфонных компенсаторов или гибких металлических рукавов с целью компенсации термических деформаций. При этом термические деформации воспринимаются компенсирующими гибкими элементами [1]. Число циклов перемены температур, а следовательно, термических деформаций может быть достаточно большим. В этих условиях применение многих сталей и сплавов становится невозможным из-за их хладноломкости.

В данной статье излагаются результаты расчетного исследования предельных состояний многослойных сильфонных компенсаторов (далее СК) с внутренними диаметрами Д_у36, Д_у56. Д_у92, где Д_у — условный (внутренний) диаметр в миллиметрах.

В качестве материала для изготовления гофрированных оболочек (сильфонов) и деталей концевой арматуры были выбраны сталь 12X18H10T и алюминий-магниевый сплав АМг6 как наиболее употребительны в криогенной технике [2], причем сочетания слоев из материалов указанных выше было разным (см. табл. 1).

Здесь же приведены геометрические параметры каждого слоя многослойной гофрированной оболочки, определенные с помощью подпрограммы разработанной в НИЛ «Гибкие трубопроводные системы» УГАТУ (НИЛ ГТС УГАТУ). Условия эксплуатации сильфонных компенсаторов приведены в табл. 2.

Анализ конкретных условий эксплуатации и требования заказчика позволили установить, что основным критерием предельных состояний указанных компенсаторов являются:

1. Циклопрочность (число циклов до разрушения);

2. Давление общей потери устойчивости $p_{\rm kp}$ (прогиб оси сильфона);

3. Давление местной потери устойчивости $p_{\text{деф}}$ (начала пластической деформации гофров);

 Колебания, вызываемые потоком рабочей среды.

ОСНОВНЫЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

Для расчета используются уравнения, описывающие напряженно-деформированное состояние (НДС) и прочность сильфона при циклическом упругопластическом нагружении.

Малоцикловое нагружение сильфонов при изгибах происходит в жестком цикле нагружения. Для описания обобщенной циклической диаграммы деформирования использован обобщенный принцип Мазинга. В качестве критерия разрушения используется деформационно-кинетический критерий в виде

$$d_{\rm vct} + d_{\rm ct} = 1 \,,$$

где $d_{\rm yct}$ — усталостное повреждение;

*d*_{ст} — квазистатическое повреждение.

Сильфон	Слой сильфона	Параметры отдельных слоев профиля гофра				Толщина слоя <i>s</i> ₀ , мм	Материал		
		dy,	<i>D</i> ,	h,	t,	r,	r_1 ,		
		MM	MM	MM	MM	MM	MM		
1	2	3	4	5	6	7	8	9	10
Ду36	третий (наруж- ный)	37	48	5,5	5,1	0,8	1,75	0,2	AMr6
	второй	36,6	47,6	5,5	5,1	1,0	1,55	0,2	АМг6
	первый (внутрен- ний)	36	47,2	5,6	5,1	1,2	1,35	0,3	АМг6
Ду56	четвертый (наруж- ный)	57,2	75	8,9	6,5	1,0	2,25	0,2 0,2	АМг6 12Х18Н10Т
		57,4	75	8,8	6,5	1,0	2,25	0,2 0,2	АМг6 12Х18Н10Т
	третий	56,8	74,6	8,9	6,5	1,2	2,05	0,2 0,2	АМг6 12Х18Н10Т
		57	74,6	8,8	6,5	1,2	2,05	0,2 0,2	Амг6 12Х18Н10Т
	второй	56,4	74,2	8,9	6,5	1,2	2,05	0,2 0,2	АМг6 12Х18Н10Т
		56,6	74,2	8,8	6,5	1,4	1,85	0,2 0,2	AMr6 12X18H10T
	первый (внутрен- ний)	56	73,8	8,9	6,5	1,6	1,65	0,2 0,2	АМг6 АМг6
		56	73,8	8,9	6,5	1,6	1,65	0,3 0,3	АМг6 АМг6
Ду92	четвертый (наруж- ный)	93,8	120	13,1	12,5	2,55	3,1	0,3 0,3	АМг6 12Х18Н10Т
		94	120	13	12,5	2,55	3,7	0,3 0,3	АМг6 12Х18Н10Т
	третий	93,2	119,4	13,1	12,5	2,85	3,4	0,3 0,3	АМг6 12Х18Н10Т
		93,4	119,4	13	12,5	2,85	3,4	0,3 0,3	АМг6 12Х18Н10Т
	второй	92,6	118,8	13,1	12,5	3,15	3,1	0,3 0,3	АМг6 12Х18Н10Т
		92,8	118,8	13	12,5	3,15	3,1	0,3 0,3	АМг6 12Х18Н10Т
	первый (внутрен- ний)	92	118,2	13,1	2,5	3,45	2,8	0,3 0,3	АМг6 Амг6
		92	118,8	13,1	2,5	3,45	2,8	0,4 0,4	АМг6 АМг6

Геометрические параметры профиля гофра сильфонов

Таблица 2

Таблица 1

Параметры рабочей среды

Типоразмер компенсатора	Температура рабочей среды, К	Давление рабочей среды, кгс/см	Угол качания (изгиба), γ , град
Ду36	24	0,2	± 8
Ду56	20	5,5	± 8
Ду92	77	3,0	± 8

В жестком цикле нагружения, характерном для работы сильфонных компенсаторов, односторонне накопленная деформация практически отсутствует. Поэтому принимаем условие прочности в виде $d_{\rm ycr} < 1$. Кривая усталости аппроксимируется выражением типа Лэнджера

$$N_{i}(t) = \left(\frac{c(t)}{\varepsilon_{u \max}^{(k)} - \frac{\sigma_{-1}}{3G(t)}}\right)^{2},$$

где $c(t) = 0.5 \cdot \ln \frac{1}{1 - \psi(t)};$

 ψ — коэффициент поперечного сужения гладкого образца, G(t) — модуль сдвига; σ_{-1} — предел выносливости гладкого образца; $\varepsilon_{u\,\,\rm max}^{(k)}$ — максимальное значение интенсивности деформаций в k-м полуцикле нагружения; t — общее время деформирования.

Для корреляции гладкого образца в тонкостенную оболочку сильфона используется коэффициент k = 1,5 [1]. Таким образом

$$c(t) = 0.5 \cdot \ln \frac{1}{1 - \psi_1(t)}$$

где $\psi_1(t) = \psi(t) \cdot k$.

Для определения значения ψ используются диаграмма $\psi = f(p(t))$, где p(t) — параметр Ларсена—Миллера

$$p = (273 + t)(s + \lg \tau),$$

где τ — время выдержки; s — коэффициент, s = 7,12; t — температура по шкале Цельсия.

Диаграмма строится на основе испытаний образцов на длительную статическую прочность. При расчете долговечности, используя найденное значение p (определяется по температуре), по диаграмме определяется значение ψ .

Используется решение задачи теории оболочек для полуцикла нагружения.

В качестве первой группы разрешающих уравнений используются уравнения равновесия элемента оболочки.

Второй группой разрешающих уравнений являются соотношения связи перемещений и деформаций срединной поверхности оболочки.

Третьей группой являются уравнения связи напряжений и деформаций

$$E + A = B$$

где *Е* — матрица коэффициентов; *А* — матрица деформаций; *B* — матрица усилий.

Для соотношения связи напряжений и деформаций за пределами упругости использован метод переменных параметров упругости И. А. Биргера (МППУ).

Вышеописанные три группы разрешающих уравнений в частных производных образуют замкнутую систему — систему восьми обыкновенных дифференциальных уравнений первого порядка в полных производных для случая винтообразной оболочки.

$$\frac{dY}{dS} = D \times Y + F \,,$$

где Y — вектор неизвестных; D — матрица коэффициентов; F — вектор температурных и распределенных силовых нагрузок.

Для случая расчета сильфонов с кольцевыми гофрами используется система шести уравнений.

Для определения перемещений сильфона при качании, перемещения от изгиба приводятся к эквивалентным перемещениям от растяжения-сжатия [3, 4].

Долговечность всего сильфона определяется по долговечности слоя с наименьшими значениями числа циклов до разрушения.

МЕТОДИКА РАСЧЕТА НА ЦИКЛОПРОЧНОСТЬ

Для расчета необходимы следующие исходные данные:

а) механические свойства материала сильфона — модуль сдвига, коэффициент Пуассона, предел выносливости, коэффициент линейного расширения, диаграмма зависимости относительного сужения от параметра Ларсена–Миллера, а для диаграммы деформирования: напряжение и деформация, соответствующие пределу текучести, координаты конечной точки диаграммы деформирования;

б) геометрия оболочки — координаты осевого Z и радиального R направлений срединной линии полугофра для каждого слоя сильфона; значения толщин слоя;

в) нагрузки — граничные условия (компонента перемещения в осевом направлении); температура нагружения;

г) специальные идентификаторы — константы и переменные в программе расчета;

д) величина сходимости (отклонение по напряжениям от диаграммы деформирования) для МППУ.

Дифференциальные уравнения, граничные условия и нагрузки в предположении упругости образуют краевую задачу. За пределами упругости, когда связь между напряжениями и деформациями становится нелинейной (физическая нелинейность), напряжения, деформации определяются диаграммой деформирования. Поэтому при малоцикловом нагружении сильфонов задача определения напряжений и деформаций сводится к решению нелинейной краевой задачи для системы обыкновенных дифференциальных уравнений.

После ввода исходных данных определяются значения параметров Ламе и радиусов кривизны в узлах разностной сетки [3].

Далее реализуется вычисление «жесткостных» коэффициентов и «температурных членов», входящих в матрицу соотношения связи перемещений и деформаций за пределами упругости.

Затем определяются матрицы коэффициентов разрешающей системы дифференциальных уравнений в узлах разностной сетки.

Краевая задача разрешается методом ортогональной прогонки.

На основании значений компонентов перемещений, полученных при решении краевой задачи, определяются деформации срединной поверхности. Затем вычисляются деформации и напряжения во всей оболочке (дискретно по меридиану и по толщине). Здесь же вычисляются значения интенсивности напряжений и деформаций.

Далее производится коррекция переменных параметров упругости для всех точек оболочки, где превышен предел текучести. Здесь используется функция, которая для заданных интенсивности напряжений и секущего модуля определяет соответствующее значение напряжения по диаграмме деформирования. Диаграмма деформирования аппроксимируется полиномной зависимостью. Если разница между полученным после решения краевой задачи и диаграммным напряжением превышает величину сходимости МП-ПУ, все предыдущие расчеты, начиная с определения «жесткостных» коэффициентов, повторяется до тех пор, пока не наступит сходимость МППУ.

Если описанным выше способом был рассчитан четный полуцикл, то видоизменяем диаграмму деформирования и повторяем все предыдущие вычисления для следующего, нечетного, полуцикла. Получив таким образом, максимальное и минимальное значение деформации в каждой точке оболочки для одного цикла, обращаемся к расчету долговечности по кривой усталости.

Таблица 3

Слой сильфона	Материал	Температура, К	Число циклов N, циклов	
		сильфон Ду92		
внутренний	АМг6	293 К	833869	
		77 K	4303715	
наружный	АМг6	293 К	402028	
		77 K	2451176	
	X18H10T	293 К	83625	
		77 K	118797	
	•	сильфон Ду56		
внутренний	АМг6	293 К	45326588	
		20 К	12680071	
наружный	АМг6	293 К	24942760	
		20 К	4490013	
	X18H10T	293 К	271668	
		20 К	180854	
	•	сильфон Ду36		
внутренний	АМг6	293 К	10558	
		24 K	32324	
наружный	АМг6	293 К	21501	
		24 K	127219	

Число циклов до разрушения сильфонов

На основе вышеизложенной методики были рассчитаны количество циклов до разрушения сильфонов Ду36, Ду56 и Ду92. Расчет циклопрочности сильфонов производился согласно технического задания заказчика для оговоренных углов качания, при температуре 293 К (20°С) без давления и при температурах рабочих сред 77 К для Ду92, 20 К для Ду56, 24 К и для Ду36 под давлением.

Результаты расчета количества циклов до разрушения слоев сильфонов приведены в табл. 3.

ИССЛЕДОВАНИЕ СОБСТВЕННЫХ ЧАСТОТ И ВИБРОПРОЧНОСТИ ГМТ ПРИ ПРОТЕКАНИИ ПОТОКА ГАЗА

В свое время [5], проведенные в НИЛ ГТС УГАТУ гидравлические испытания масштабных моделей гофрированных оболочек в гидролотке позволили установить, что причиной возникновения продольных колебаний гофрированных оболочек (сильфонов) является периодический срыв вихрей с гофров и соответствующее периодическое изменение силы сопротивления. Выработанная гипотеза подтвердилась при испытаниях натурных гофрированных оболочек на гидроустановке [6]. Гипотеза заключается в том, что срыв вихрей приводит к колебаниям гофров, движение гофров при колебаниях подстраивает частоту срыва вихрей под частоту собственных продольных колебаний оболочки, вызывая при этом увеличение интенсивности вихрей и возникновение резонанса. Проливки гофрированных оболочек на гидроустановке доказали, что, по мере увеличения скорости потока поочередно, на определенных скоростях возникают резонансные режимы, переход частоты колебаний по одной форме к частоте колебаний по другой форме происходит в очень узком интервале времени (практически мгновенно). Характерным является тот факт, что с увеличением номера формы амплитуды резонансных колебаний увеличиваются [6].

Динамическая модель гофрированной оболочки компенсатора для исследования колебаний гофров представляется в виде системы с сосредоточенными параметрами (рис. 1) [6], а математическая модель в виде системы дифференциальных уравнений

$$m \ddot{x}_{1} + c (x_{1} - x_{2}) + \beta (x_{1} - x_{2}) =$$

= $F_{0} \left[\frac{\delta_{1}}{2} \cos \left(\omega t + \varphi_{1/2} \right) - \delta_{3/2} \cos \left(\omega t + \varphi_{3/2} \right) \right];$

$$m \ddot{x}_{1} + c (2x_{i} - x_{i-1} - x_{i+1}) + \beta (2x_{i} - x_{i-1} - x_{i+1}) = F_{0} [\delta_{i-1/2} \cos (\omega t + \varphi_{i-1/2}) - \delta_{i+1/2} \cos (\omega t + \varphi_{i+1/2})];$$

$$m \ddot{x}_{n} + c (x_{n} - x_{n-1}) + \beta (x_{n} - x_{n-1}) =$$

= $F_{0} \left[\delta_{n-1/2} \cos \left(\omega t + \varphi_{n-1/2} \right) - \delta_{n+1/2} \cos \left(\omega t + \varphi_{n+1/2} \right) \right].$

Левые части уравнений содержат массу гофра с присоединенной массой жидкости *m*; перемещение *i*-й массы *x_i*; жесткость гофра C; коэффициент демпфирования β , учитывающий аэродинамическое, конструкционное демпфирование и демпфирование за счет трения в материале. Правые части уравнений представляют периодическую силу F_i действующую на гофры и содержат амплитуду силы срыва F₀; сдвиг фаз соседних гофров при колебаниях $\phi_{i\pm 1/2}$; коэффициенты δ_i , учитывающие изменение знаков фазового угла срыва вихрей при переходе через пучность формы колебаний. Определение амплитудного значения возбуждающей силы F₀ производилось на основе теоремы Н. Е. Жуковского, согласно которой сила F_0 , создаваемая вихревым шнуром, определялась как

$$F_0 = \Gamma \cdot \rho \cdot V \cdot L \,,$$

где Γ — циркуляция скорости; L — длина образующего вихревого потока; V — скорость потока рабочей среды.

С использованием математической модели продольных колебаний гофрированной оболочки и зависимостей декрементов колебаний, полученных ранее, и с использованием уравнений теории тонкостенных оболочек, был выполнен расчет интенсивности вибронапряжений в гофрах, на критических скоростях.

Номер формы	Частота, Гц	Скорость, м/с	Сила, Н	Напряжения, к Γ /мм 2	Ресурс, час
1	716,3	16,93	0,79	5,145	110,69
2	1432,6	33,86	3,16	10,234	3,54
3	2149,0	50,79	7,10	15,210	0,48
4	2865,3	67,72	12,62	20,020	0,12
5	3581,6	84,65	19,72	24,610	0,04
6	4297,9	101,58	28,40	28,931	0,02
7	5014,2	118,51	38,65	32,935	0,01
8	5730,6	135,44	50,48	36,578	0,01
9	6446,9	152,37	63,89	39,820	0,00
10	7163,2	169,30	78,88	42,636	0,00
11	7879,5	186,23	95,44	44,965	0,00
12	8595,8	203,16	113,58	46,812	0,00
13	9312,2	220,10	133,30	48,145	0,00
14	10028,5	237,03	154,60	48,951	0,00
15	10744,8	253,96	177,47	49,221	0,00
			-		-

Результаты расчетов резонансов

В табл. 4 приведены результаты расчета резонансных частот, критических скоростей, амплитудных значений возмущающих сил, максимальных значений эквивалентных напряжений при пике резонанса и величин ресурса компенсатора для соответствующих резонансов.

РАСЧЕТ ДАВЛЕНИЙ ПОТЕРИ УСТОЙЧИВОСТИ, ЛИНЕЙНОЙ И ИЗГИБНОЙ ЖЕСТКОСТЕЙ СИЛЬФОНОВ

Наиболее распространенный способ установки компенсаторов на изделие — жесткое закрепление концов с подачей давления во внутреннюю полость компенсаторов. При этом под действием внутреннего давления достаточно того, что гибкая оболочка может потерять устойчивость и начать изгибаться.

На практике устойчивость определяют путем замера искривленной оси при подаче внутреннего давления. Критическое давление определяется по формуле

$$p_{\rm Kp} = \frac{1}{2} \frac{\pi^2 \cdot b \cdot P \cdot t}{L^2} \cdot m \,;$$

где b — средний радиус гофрированной оболочки; P — усилие от перемещения полуволны гофра на величину $\lambda = 1$ (рассчитывалось по методике, изложенной в работе [3] с учетом механических характеристик каждого слоя сильфона); t — шаг гофрировки; L — длина гофрированной оболочки;

т – число слоев.

Компенсаторы в системах трубопроводов вводятся для восприятия монтажных и ра-

бочих перемещений концов трубопроводов. При перемещении в компенсаторах возникают распорные усилия, которые действуют на трубопроводы и их опоры. Распорные усилия зависят от жесткости гофрированной оболочки и могут достигать значительных величин, которые необходимо учитывать в расчетах трубопроводных систем.

Таблица4

Осевая жесткость многослойной гофрированной оболочки рассчитывается по формуле

$$C_{\text{осев}} = \frac{\pi \cdot b \cdot P}{n_{\Gamma}} \cdot m;$$

где *n*_Г — число гофров.

Изгибная жесткость металлических рукавов и компенсаторов зависит от прочностных свойств материала, геометрических характеристик гибкой части и от эксплуатационных факторов.

Изгибная жесткость гибкой части многослойной гофрированной оболочки определяется по формуле

$$(EI)_0 = \frac{b^3 \cdot \pi \cdot P \cdot t}{2} \cdot m \,.$$

Эксплуатационная надежность сильфонов во многом зависит от правильного и обоснованного назначения важнейшей эксплуатационной характеристики — рабочего давления ($p_{\rm pab}$). Завышение или занижение величины рабочего давления приводит к снижению циклической прочности, что отражается на ресурсе и надежности изделий. Критерием достижения предельного состояния гофрированной оболочки принято давление $p = p_{\text{деф}}$ ($p_{\text{д}}$). Формула для определения величины $p_{\text{д}}$ имеет вид

$$p_{\mathrm{\Pi}} = \frac{[\lambda] \cdot \sigma_T}{\sigma_{i \ p=1}} \cdot m;$$

где $[\lambda]$ — допускаемое относительное перемещение полуволны гофра (на основании исследований можно принять $[\lambda] = 2,5$ [3]); $\sigma_{\rm T}$ предел текучести материала; $\sigma_{i \, p=1}$ — интенсивность напряжения в гофрированной оболочке от внутреннего давления p = 1 (рассчитывалось по методике [3]).

Для расчета величины P усилия от перемещения полуволны гофра и величины σ_i интенсивности напряжения сильфона использована методика, приведенная в источнике [3], где учитываются механические свойства материалов.

ЗАКЛЮЧЕНИЕ

Как известно [2], металлы и сплавы при низких температурах (температурах криогенных жидкостей) обладают свойствами хладноломкости, т.е. хрупким разрушением при действии нагрузки без заметных пластических деформаций. При этом металлы с гранецентрированной кубической решетки не охрупчиваются при низких температурах, в частности, алюминий, аустенитные стали с высоким содержанием никеля, меди и др. Поэтому применение сплава АМг6 и нержавеющей стали 12Х18Н10Т для изготовления сильфонов, работающих в условиях низких температур, оправдано [7].

Одним из критериев пригодности материала для работы при низкой температуре может служить интенсивность роста предела текучести в зависимости от снижения температуры. У хладноломких металлов и сплавов с понижением температуры предел текучести возрастает незначительно.

У алюминий-магниевых (A1-Mg) сплавов (сплавы AMr) с понижением температуры наблюдается повышение в 3–4 раза предела прочности ($\sigma_{\rm B}$). Однако A1-Mg сплавы с содержанием Mg > 5,6% обнаруживают снижение пластичности начиная с температуры 77 К [7]. Сплав AMr6 не обладает ни эффектом закалки, ни эффектом старения, т. е. свойства их в отожженном, закаленном и состаренном состояниях одни и те же.

Прочностные характеристики A1-Mg сплавов, особенно предел текучести, существенно повышаются в результате холодной нагартовки, при этом пластичность сплавов понижается и коррозионная стойкость ухудшается. Однако путем последующего нагрева пластичность и коррозионная стойкость вновь повышаются. Необходимо иметь ввиду, что у сплава АМг6 (особенно в нагартованном состоянии) при температуре 77 К и ниже начинают проявляться чувствительность к концентраторам напряжений, склонность к расслаиванию, а при температуре 20 К снижается пластичность материала. Таковы общие сведения о поведении материала сильфонов в условиях низких температур.

Значения ряда величин, характеризующих механические свойства материалов при низких температурах, в справочной и другой литературе носят разноречивый характер. В частности, в источнике [2] для АМг6 при температуре 77 К даны значения коэффициента поперечного сужения $\psi = 14\%$ и при температуре 20 К — значение $\psi = 4\%$, а в источнике [8] для тех же температур 77 К и 20 К соответственно даны $\psi = 70\%$ и $\psi = 55\%$. Коэффициент поперечного сужения и тех же величинах амплитудного значения интенсивностей деформаций.

Выводы:

1) Расчет давлений потери устойчивости сильфонов $p_{\rm Kp}$ и давления начала пластической деформации гофров $p_{\rm деф}$, показал, что у всех сильфонов значения $p_{\rm Kp}$ и значения $p_{\rm деф}$ с большим запасом превышают величину давления при гидроударе, параметры которого оговорены заказчиком;

2) Сравнение расчетных значений скоростей потока, при которых возможно возникновение продольных колебаний гофров, со скоростями течения рабочей среды, показало, что режимы течения с резонансными продольными колебаниями гофров для всех сильфонов отсутствуют.

3) Критерием оптимальности конструкций различных исполнений в первую очередь является не нарушение герметичности внутреннего слоя; остальные, наружные слои играют роль подкрепляющих элементов. Выбор наиболее оптимального варианта следует производить по результатам расчетов циклопрочности.

4) В результате проведенной научно-исследовательской работы стало очевидной необходимость проведения дополнительных теоретических исследований работоспособности сильфонов в условиях криогенных температур.

СПИСОК ЛИТЕРАТУРЫ

- НИР. Исследование влияния технологической наследственности на геометрические характеристики и малоцикловую прочность сильфонных компенсаторов : отчет о науч.иссл. работе. Договор № 891 между ИМАШ АН СССР и Уф НИИД. М., 1989.
- Кошелев, П. Ф. Механические свойства материалов для криогенной техники / П. Ф. Кошелев. М.: Машиностроение, 1971. 282 с.
- Гусенков, А. П. Унифицированные гибкие элементы трубопроводов : справ. пособие / А. П. Гусенков, Б. Ю. Лукин, В. С. Шустов. М.: Изд-во стандартов, 1988. 296 с.
- 4. Андреева, Л. Е. Сильфоны. Расчет и проектирование / Л. Е. Андреева. М. : Машиностроение, 1975.
- Итбаев, В. К. Механизм возбуждения колебаний гибких металлических трубопроводов потоком жидкости или газа / В. К. Итбаев, С. В. Карасев, В. А. Зиновьев // Вопросы теории и расчета рабочих процессов тепловых двигателей : межвуз. сб. Уфа : УГАТУ. 1983. № 7. С. 131–134.
- 6. **Итбаев, В. К.** Вибропрочность гибких металлических трубопроводов при протекании рабочих сред / В. К. Итбаев // Изв. вузов. Авиац. техника. 1996. № 3. С. 78–81.
- Алюминиевые сплавы. Свойства, обработка, применение : справочник. М. : Машиностроение, 1979. 541 с.
- Фридляндер, И. Н. Алюминиевые деформируемые конструкционные сплавы / И. Н. Фридляндер. М. : Металлургия, 1979. 208 с.

ОБ АВТОРАХ

Итбаев Валерий Каюмович, проф., зав. каф. основ конст. мех. и машин. Дипл. инж.мех. (УАИ, 1970). Д-р техн. наук по авиац. двиг. (УГАТУ, 1996). Иссл. в обл. динамики и прочн. авиац. двигателей.

Скуратов Борис Иванович, вед. конст. «КБ химавтоматики». Иссл. и разр. гибких соединений трубопроводов и методов их расчета.

Федоров Владимир Александрович, ст. преп. той же каф. Дипл. инж.-мех. по авиац. двиг. и энергет. установкам (УГАТУ, 1999). Иссл. в обл. гибких трубопроводов.

Янситова Наталья Александровна, бакалавар техн. и технол. по авиа- и ракетостроению (УГАТУ, 2007), студ. 5-го курса.