Вестник УГАМ

МАШИНОСТРОЕНИЕ

УДК 669.2:539.3

В. С. Жернаков, Т. Н. Мардимасова, М. Р. Арсланов

ОСОБЕННОСТИ РАСПРЕДЕЛЕНИЯ ОСТАТОЧНЫХ НАПРЯЖЕНИЙ В ДЕТАЛЯХ НЕРАЗЪЕМНЫХ СОЕДИНЕНИЙ, ИЗГОТОВЛЕННЫХ ИЗ НАНОСТРУКТУРНОГО ТИТАНОВОГО СПЛАВА ВТ6

Исследована возможность применения наноструктурного титанового сплава ВТ6 в конструкции законцовки гибкого трубопровода. Проанализированы характер, уровень напряженно-деформированного состояния и остаточных напряжений в деталях изделия. Установлено различие в уровне напряженного состояния при использовании материала ВТ6 и наноструктурного титанового сплава. *Титановый сплав ВТ6; наноструктурный титановый сплав ВТ6; законцовка трубопровода; развальцовка*

В настоящее время проявляется большой интерес к разработке двигателей нового поколения с улучшенными силовыми и прочностными характеристиками, что также требует увеличение рабочих параметров во вспомогательных системах. Так, увеличение скорости подачи топлива, охлаждения и т. д. приводит к дополнительным нагрузкам на транспортировочные системы. Такие системы подразумевают транспортировку рабочей жидкости через жесткие трубы, однако, в условиях рабочих нагрузок и схемы подключения для стыковки труб применяются гибкие трубопроводы. Основную нагрузку в конструкции гибких трубопроводов при эксплуатации испытывают законцовки, которые обеспечивают герметичность и надежность стыковки. Таким образом, имеется необходимость в доработке применяемых в настоящее время изделий. Одним из решений данной проблемы является замена материала без изменения самой конструкции. Известно, что металлы с измельченными до наноразмеров зернами обладают физико-механическими свойствами, существенно отличающимися от крупнокристаллических материалов. Результаты экспериментальных исследований свидетельствуют о существенном повышении характеристик статической и циклической прочности, а также высокоскоростной сверхпластичности данных материалов. Применение наноструктурных материалов в элементах конструкций авиационных изделий представляет значительный практический интерес.

Настоящая работа посвящена исследованию напряженно-деформированного состояния в деталях законцовки трубопровода, изготовленных

из стандартных [1] и объемных наноструктурных материалов, в процессе формирования неразъемного соединения (HC), а также характера распределения остаточных напряжений.

Рис. 1. Эскиз: *а* – соединения, *б* – ниппеля, *в* – вкладыша

Контактная информация: maratarslanow@yandex.ru

Соединение состоит из двух деталей:

• ниппель ($d_{1\text{H}} = 42,3$ мм, $L_{1\text{H}} = 23$ мм). Деталь типа ниппель на внутреннем диаметре имеет гребешки размерами $L_{2\text{H}} = 0,3$ мм и h = 0,2 мм.

• вкладыш ($d_{1\text{B}} = 42$ мм, $d_{2\text{B}} = 45$ мм, $L_B = = 107$ мм).

На рис. 1, *а*, *б*, *в* приведены эскизы соединения, ниппеля и вкладыша соответственно.

МОДЕЛИРОВАНИЕ ПРОЦЕССА

Изготовление законцовки трубопровода производится методом пластической деформации. Для его осуществления применяется известный и широко используемый способ – раздача (развальцовка).

На рис. 2 приведена схема технологического процесса развальцовки внутреннего диаметра вкладыша.

Рис. 2. Эскиз технологического процесса раздачи

На первом этапе вкладыш зафиксировали в шпинделе станка, и на поверхность наружного диаметра d_{1B} установили ниппель. Далее во вкладыш вводилось специальное приспособление. При поступательном движении конуса вдоль оси Z осуществлялось движение роликов, направленное вдоль оси Y. Это привело к нагружению вкладыша внутренним давлением p. Вследствии нагружения производилась раздача внутреннего диаметра. Значение внутреннего давления p зависит от скорости движения и угла конуса.

Следующим шагом в технологической операции являлся вывод раскатника из сформировавшегося соединения. При движении конуса осуществлялся возврат роликов, менялась зона контактного взаимодействия с заготовкой, и на участках, вышедших из взаимодействия, происходила разгрузка. По завершению вывода роликов формировались поля остаточных напряжений и деформаций по всему объему деталей. При построении расчетной модели процесса, в силу симметрии принимались 1/4 часть деталей и приспособления (рис. 3).

Вкладыш выполнен из нержавеющей стали 12Х18Н10Т, ниппель изготовлен из обычного (для варианта первого расчета) и наноструктурного (для второго варианта расчета) титанового сплава ВТ6. При расчете детали принимались как упругопластические тела. В табл. 1 приведены механические характеристики материалов [2, 3].

Таблица	a 1
гаолица	1 1

			1
Наименование и обозначение марки материала	σ _{0,2} , МПа	σ _{пч} , МПа	<i>E</i> ×10 ⁻⁵ , МПа
Нержавеющая сталь 12X18H10T	210	670	2,1
Титановый сплав ВТ6	700	1150	1,15
Наноструктурный титановый сплав ВТ6	1360	1500	1,15

Ролики выполнены из инструментальной стали 6ХВГ ($\sigma_{\rm T} = 1450$ МПа, $\sigma_{\rm \Pi 4} = 1570$ МПа). Модуль упругости $E = 3 \times 10^5$ МПа. Учитывая, что модуль упругости оснастки много больше модуля упругости вкладыша ($E = 1,96 \times 10^5$ МПа) при моделировании оснастку принимаем как абсолютно жесткое тело.

На рис. З a, δ проиллюстрирована расчетная схема. Как видно на первом этапе внутренняя поверхность вкладыша на участке L_1 нагружалась давлением p, соответствующим давлению, создаваемым, контактным взаимодействием роликов приспособления при раздаче.

При составлении расчетной схемы были приняты следующие граничные условия.

Перемещение точек, лежащих на линии 1-2, ограничены в осевом и радиальном направлениях: u(z) = 0 мм, $W(z = L_3) = 0$ мм.

На втором этапе меняется направление воздействия силового фактора p в обратное направление (рис. 3, δ). Точки, лежащие на линии 1-2, могли перемещаться в обоих направлениях.

Численное решение задачи моделирования процесса изготовления соединения было выполнено с помощью метода конечных элементов [4], реализованного в двухмерной осесимметричной постановке с использованием программно-вычислительного комплекса DEFORM 2D.

Рис. 3. Расчетная схема технологического процесса изготовления узла: *а* – первый этап; *б* – второй этап

Для создания сеточных аналогов вкладыша и ниппеля использовались прямоугольные 4-узловые плоские элементы. Количество элементов составило 10000 шт. для вкладыша и 10000 шт. для ниппеля, количество элементов по толщине вкладыша – 9 шт.

За метод решения принимался итерационный метод Ньютона – Рафсона, для решения систем уравнения использовался метод сопряженных градиентов.

Для снижения влияния на результаты вычислений искажения сеточного аналога и получения достоверных данных, в расчете использовался алгоритм перестроения конечных элементов, в ходе которого данные из старой сетки интерполировались в новую. Критерием перестроения явилось максимальное искажение формы элементов.

Проведение исследования было разбито на два этапа. На первом расчет выполнялся для HC, выполненных из материалов BT6 и 12X18H10T.

На рис. 4, *а*, *б* показаны поля распределения средних (сплошная линия) и остаточных (пунктирная линия) осевых σ_z , тангенциальных σ_{θ} напряжений во вкладыше на наружной поверхности.

85

Видно, что максимальные осевые сжимающие напряжения возникают в зоне контакта гребешков ниппеля и поверхности трубы и достигают значения $\sigma_z = 585$ МПа. Ближе к торцу заготовки, осевые напряжения стремятся к нулю, на границе участка $L_1 - L_2$ наблюдается рост растягивающих напряжений и их значения достигают максимума – 70 МПа. Подобный характер наблюдается в отношении тангенциальных напряжений. Максимальные тангенциальные сжимающие напряжения равны 710 МПа, а максимальные растягивающие – 360 МПа.

По окончанию процесса изготовления неразъемного соединения в трубе вследствие неоднородности деформаций возникли остаточные напряжения и деформации. На рис. 4, *а*, *б* штриховыми линиями проиллюстрированы поля распределения остаточных напряжений после вывода приспособления из трубы. Отметим, что вывод приспособления не приводит к значительному изменению характера распределения напряжений, а происходит падение уровня их значений. Максимальные растягивающие тангенциальные напряжения составляют 120 МПа, а сжимающие – 610 МПа. Максимальные значения растягивающих осевых остаточных напряжений равны 160 МПа, сжимающих – 370 МПа.

На рис. 5 приведены графики распределения напряжений в детали типа ниппель в процессе раздачи и по окончанию технологического процесса.

Заметим, что в зоне контакта гребешков ниппеля и наружной поверхности трубы, сжимающие напряжения достигают максимального значения и равны $\sigma_z = 1000$ МПа, $\sigma_{\theta} = 820$ МПа. По окончанию обработки в ниппеле формируются поля остаточных напряжений. Как видно из графиков, характер остается неизменным, происходит лишь изменение уровня напряжений. Наибольший спад наблюдается в отношении сжимающих напряжение, их значения равны $\sigma_z^* = 580$ МПа, $\sigma_{\theta}^* = 650$ МПа.

Рис. 5. Поля распределения остаточных напряжений: *a* – осевые напряжения σ_z; *б* – тангенциальные напряжения σ_θ

На втором этапе исследования проводился расчет для HC выполненного из наноструктурного титанового сплава BT6 и нержавеющей стали 12X18H10T.

На рис. 6 *а*, б показаны поля распределения средних (сплошная линия) и остаточных (пунк-

тирная линия) осевых σ_z , тангенциальных σ_θ напряжений во вкладыше.

Рис. 6. Поля распределения средних и остаточных напряжений после раздачи внутреннего диаметра трубы; a – осевые напряжения σ_z ; δ – тангенциальные напряжения σ_{θ}

Видно, что максимальные осевые сжимающие напряжения возникают в зоне контакта гребешков ниппеля и поверхности трубы и достигают значения $\sigma_z = 850$ МПа. Ближе к торцу заготовки, осевые напряжения стремятся к нулю, на границе участка $L_1 - L_2$ наблюдается рост растягивающих напряжений и их значения достигают максимума – 320 МПа. Подобный характер наблюдается в отношении тангенциальных напряжений. Максимальные тангенциальные сжимающие напряжения равны 780 МПа, а максимальные растягивающие – 360 МПа.

По окончанию процесса изготовления неразъемного соединения в трубе вследствие неоднородности деформаций возникли остаточные напряжения и деформации. На рис. 6, *а*, *б* штриховыми линиями проиллюстрированы поля распределения остаточных напряжений после вывода раскатника из трубы. Характер остаточных тангенциальных напряжений сжимающий, и максимальное значение составляет 700 МПа. Максимальные значения растягивающих осевых остаточных напряжений равны 80 МПа, сжимающих – 400 МПа.

На рис. 7, *a*, *б* приведены графики распределения напряжений в детали типа ниппель в процессе раздачи и по окончанию технологического процесса.

Заметим, что в зоне контакта гребешков ниппеля и наружной поверхности трубы, сжимающие напряжения достигают максимального значения и равны $\sigma_z = 1380$ МПа, $\sigma_{\theta} = 880$ МПа. Учитывая достаточно напряженное состояние в данной области, гребешки ниппеля в процессе нагружения подвергаются расплющиванию. По окончанию обработки, в ниппеле формируются поля остаточных напряжений. Как видно из графиков, характер остается неизменным, происходит лишь изменение уровня напряжений. Наибольший спад наблюдается в отношении сжимающих напряжений, их значения равны $\sigma_z^* = 800$ МПа, $\sigma_{\theta}^* = 390$ МПа

Рис. 7. Поля распределения остаточных напряжений: *a* – осевые напряжения σ_z; *б* – тангенциальные напряжения σ_θ

Таким образом, в результате проведенного исследования были получены характер распределения НДС и остаточных напряжений в деталях законцовки трубопровода. В табл. 2, 3 приведены сравнительные данные напряжений, возникающих в процессе нагружения и разгрузки при использовании стандартного материала и наноструктурного титанового сплава.

Таблица	2
---------	---

87

Наим детали	иенование 1 / материал	σ _{θ max} , ΜΠα	σ _z _{max} , МПа	Δσ _θ _{max} , ΜΠα	$\Delta \sigma_z$ max, ΜΠα
H	иппель ВТ6	-820	-1000	0	0
Вкладыш 12X18Н10Т	Участок L	-710	-585	0	0
	Участок L	360	-400	0	80
	Участок L	-150	-420	0	220
Наност титано	иппель груктурный овый сплав ВТ6	-880	-1380	60	380
Вкладыш 12Х18Н10Т	Участок L	ı -780	-850	70	265
	Участок L	-420	320	140	0
	Участок L	3 380	-400	230	0
Таблица З					
		*	*	$\Delta \sigma^*_{\Theta}$	$\Delta \sigma_{\tau}^{*}$

Наимен детали / 1	ювание материал	σ [*] _{θ max} , МПа	σ* _{z max} , ΜΠα	Δσ [*] θ ^{max,} ΜΠα	Δσ [*] _z ^{max,} ΜΠα
Нип В'	пель Гб	-650	-580	240	0
Вкладыш 12Х18Н10Т	Участок L ₁	-610	-370	0	0
	Участок L ₂	-280	-200	180	120
	Участок <i>L</i> ₃	-190	-380	0	100
Ниппель наноструктурный титановый сплав ВТ6		-390	-800	0	220
Вкладыш 12X18H10T	Участок <i>L</i> 1	-700	-400	90	30
	Участок L ₂	-100	-80	0	0
	Участок L ₃	-320	-280	130	0

Вычисления разности напряжений производились по формуле 1.

$$\Delta \sigma = |\sigma_1| - |\sigma_2|, \qquad (1)$$

где σ_1 – напряжения в деталях, изготовленных по стандартной схеме, σ_2 – напряжения в ниппе-

ле из наноструктурного титанового сплава BT-6 и во вкладыше взаимодействующего с ним.

Видно, что в ниппеле, выполненном из наноструктурного материала, уровень осевых и тангенциальных напряжений при нагружении выше, чем в ниппеле, изготовленном из титанового сплава ВТ6 (табл. 2). Разность значений составляет 60 МПа для осевых и 240 МПа для тангенциальных напряжений. Заметим также, что при разгрузке уровень остаточных тангенциальных напряжений меньше у ниппеля, выполненного из наноструктурного титанового сплава, чем у ниппеля из стандартного материала, а в отношении осевых остаточных напряжений прослеживается обратная картина. Разность значений составляет 240 МПа и 220 МПа соответственно (табл. 3).

Что касается НДС во вкладыше, то, как показал анализ, на обоих этапах нагружения, на участке L_1 уровень напряжений больше при контакте с ниппелем из наноструктурного титанового сплава, чем с деталью из стандартного материала. Во отношении других участков наблюдается несколько иная картина. Так, в криволинейной зоне L_2 при нагружении во вкладыше при контакте с ниппелем из стандартного материала максимальные тангенциальные напряжения имеют растягивающий характер и сжимающий для осевых напряжений. Наоборот – для вкладыша, взаимодействующего с наноструктурным ниппелем.

Данные различия возникают ввиду изменения механических свойств материала. Так, у наноструктурного сплава увеличен предел текучести, при этом снижена пластичность.

Исследования НДС и остаточных напряжений показали, что в значениях наблюдаются небольшие различия. Также экспериментальные исследования свидетельствуют о том, что при испытаниях на статическую прочность гибких трубопроводов разрушение конструкции происходит в месте соединения деталей законцовки. Причем разрушению подвергаются зубчики детали типа «ниппель». Учитывая, что прочность наноструктурного материала выше, чем у обычного титанового сплава ВТ6, можно утверждать, что прочность соединения с использованием такого материала выше, чем с применением стандартного материала.

вывод

Приведенные результаты свидетельствуют о возможности применения наноструктурного титанового сплава в качестве основного материала для изготовления детали типа ниппель в конструкции законцовки трубопровода. При этом замена материала приведет к увеличению прочности соединения при статическом нагружении. Однако еще не изучена прочность такого соединения при циклических нагрузках.

СПИСОК ЛИТЕРАТУРЫ

1. OCT 1 12923 - 77.

2. Зенкевич О. Метод конечных элементов в технике. М.: Мир, 1975. 540 с.

3. Добаткин С. В. Объемные металлические нано-субмикрокристаллические материалы, полученные интенсивной пластической деформацией. М.: МИСиС, 2007. 36 с.

4. Зубченко А. С. Марочник сталей и сплавов. М.: Машиностроение, 2003. 784 с.

ОБ АВТОРАХ

Жернаков Владимир Сергеевич, проф., зав. каф. сопротивления материалов. Дипл. инженер-механик по авиац. двигателям (УАИ, 1967). Д-р техн. наук по тепловым двигателям летательн. аппаратов (УГАТУ, 1992). Иссл. в обл. механики деформируемых тел и конструкций.

Мардимасова Тамара Николаевна, доц. той же каф. Дипл. инженер-электромеханик по авиац. приборам (УАИ, 1971). Канд. техн. наук по динамике и прочности (УАИ, 1977). Иссл. в обл. механики деформируемых тел и конструкций.

Арсланов Марат Рашитович, асп. той же каф. Дипл. инженер-механик по оборудованию и технологии сварочн. производства (УГАТУ, 2010). Иссл. в обл. механики деформируемых тел и конструкций.