Вестник УГАМД

МАШИНОСТРОЕНИЕ

УДК 621.9.047

Н. М. Миназетдинов

ОБ ОДНОЙ ЗАДАЧЕ ЭЛЕКТРОХИМИЧЕСКОЙ ОБРАБОТКИ МЕТАЛЛОВ С УЧЕТОМ ПЕРЕМЕННОСТИ ВЫХОДА ПО ТОКУ ДЛЯ РЕАКЦИИ АНОДНОГО ФОРМООБРАЗОВАНИЯ

Предлагается способ определения формы анодной границы в двумерных задачах электрохимической обработки металлов, с учетом зависимости выхода по току для реакций анодного растворения металла от плотности тока в растворах нитрата натрия или хлората натрия. В рамках принятых предположений граница анода-детали разделяется на три зоны с различными законами распределения плотности тока. Исходная задача сводится к задаче о течении идеальной жидкости со свободными поверхностями. Электрохимическая обработка металлов; идеальный процесс; потенциал; гидродинамическая аналогия

Для обеспечения высокой точности копирования формы и размеров электродаинструмента (катода) на обрабатываемой заготовке (аноде) при электрохимической обработке (ЭХО) металлов нужно локализовать процесс растворения металла в зоне, предназначенной для обработки. За пределами этой зоны растворение должно резко замедляться вплоть до полного прекращения. Локализация растворения металла существенно зависит от состава электролита, свойств металла и условий проведения процесса. Одной из важных характеристик, влияющих на локализацию процесса растворения металла, является выход по току η для реакций анодного растворения металла, учитывающий влияние протекающих на анодной поверхности процессов, сопутствующих растворению металла и равный доле заряда, затраченной только на растворение металла.

МОДЕЛЬ ИСПОЛЬЗУЕМОЙ ЗАВИСИМОСТИ ВЫХОДА ПО ТОКУ ОТ ПЛОТНОСТИ ТОКА

При малых значениях плотности тока j_a на анодной границе значение выхода по току η , при электрохимической обработке в растворах нитрата натрия и хлората натрия, практически равно нулю. После достижения j_a некоторого критического значения j_{cr} в результате анодной активации металла [1] начинается увеличение η с ростом j_a . При этом основное растворение металла сосредоточено на тех участках обрабатываемой заготовки, где межэлектродное расстоя-

ние наименьшее, а скорость растворения максимальна. При удалении от рабочей поверхности катода скорость растворения падает за счет уменьшения j_a и η .

Для повышения точности электрохимического формообразования идеальной является ступенчатая функция $\eta(j_a)$ [2]

$$\eta(j_a) = 0, \ j_a < j_{cr}; \eta(j_a) = \eta_0, \ j_a \ge j_{cr}.$$
 (1)

Здесь $\eta_0 = \text{const} - \text{значение выхода по току}$ для заданного технологического режима. При наличии указанной зависимости можно получать резкую границу между областью поверхности обрабатываемой заготовки, где происходит интенсивное растворение и прилегающими к ней необрабатываемыми областями.

В работе [3] представлены экспериментальные зависимости, полученные при импульсной электрохимической обработке трубчатым электродом-инструментом, практического удельного съема металла $G = \varepsilon \eta$ от анодной плотности тока j_a ; ε – электрохимический эквивалент металла. Эксперименты проведены для сталей двух марок: 12X18H9T и 10X11H23T3MP (ЭПЗЗ) в среде 8 % водного раствора нитрата натрия при температуре 23 °С.

Из представленных результатов [3] следует, что в области поверхности обрабатываемой заготовки, где происходит интенсивное растворение металла, аналитическую зависимость практического удельного съема металла и выхода по току от плотности тока можно представить уравнением гиперболы. Для моделирования зависимости $\eta(j_a)$ введем скачкообразную функцию

Контактная информация: 8-962-577-12-91

$$\eta(j_a) = \begin{cases} 0, & j_a < j_{cr}, \\ a_0 - a_1 / j_a, & j_a \ge j_{cr}, \end{cases}$$
(2)

постоянные $a_0 > 0$, $a_1 > 0$ характеризуют свойства электролита. График зависимости (2), представлен на рис. 1.

Область I соответствует рабочей зоне, в которой происходит интенсивное растворение металла при высоких значениях j_a и η . Уменьшение j_a от j_{max} до критического значения j_{cr} приводит к убыванию η от максимального значения η_{max} до η_{cr} . В переходной области II происходит резкое снижение η до нуля при постоянном значении плотности тока, равном j_{cr} . В области III плотность тока монотонно убывает от j_{cr} до нуля. Область III соответствует необрабатываемым участкам поверхности детали (рис. 1).

Рис. 1. Зависимость выхода по току от анодной плотности тока

Зависимость (2) может быть использована для моделирования задач электрохимической обработки постоянным током [1], так как она не противоречит известным экспериментальным зависимостям $\eta(j_a)$ при электрохимической обработке в растворах нитрата натрия и хлората натрия [4], содержащих участок резкого изменения выхода по току при приближении плотности тока к j_{cr} .

Используя равенство $\eta_{cr} = \eta(j_{cr})$ и учитывая, что $\eta < 1$, получим

$$a_1 = j_{cr}(a_0 - \eta_{cr}), \ \eta_{cr} < a_0 < 1.$$
 (3)

При $a_1 = 0$ функция (2) совпадает с функцией (1) и $a_0 = \eta_0$. При $\eta_{cr} = 0$, применяемая в работе скачкообразная функция выхода по току (2), сводится к непрерывной функции $\eta(j_a)$, использованной ранее в работах [5, 6].

В соответствии с допущениями модели идеального процесса [1], электрическое поле в межэлектродном промежутке считается потенциальным, а потенциал *и* электрического поля удовлетворяет уравнению Лапласа. Значения потенциалов u_a , u_c на поверхностях анода и катода постоянны.

Рассмотрим на примере электрохимической обработки двугранным катодом в установившемся режиме [1], как особенности процесса ЭХО представленные зависимостью (2) отражаются на форме обрабатываемой поверхности.

ПОСТАНОВКА ЗАДАЧИ

Схема сечения межэлектродного промежутка для рассматриваемой задачи представлена на рис. 2. Система декартовых координат x_1 , y_1 связана с катодом. Направление вектора V_c подачи катода совпадает с положительным направлением оси ординат. Граница *AED* катода состоит из рабочей поверхности *DE*, совпадающей с осью абсцисс и перпендикулярной к ней границей *AE* на которую нанесено диэлектрическое покрытие. Изоляция нерабочей части катода позволяет уменьшить наклон боковых стенок обрабатываемой поверхности.

Рис. 2. Геометрия межэлектродного промежутка

В соответствии с зависимостью (2) искомую анодную границу разделим на три зоны. В рабочей зоне I (линия *CD*), соответствующей участку I на графике зависимости $\eta(j_a)$ (рис. 1), условие, определяющее установившуюся форму анодной границы, выражается равенством [1]

$$\eta(j_a)j_a = j_0\cos\theta, \ j_0 = \frac{\rho V_c}{\varepsilon}, \ j_a = \kappa \frac{\partial u}{\partial n_1}, \quad (4)$$

где κ – удельная электропроводность среды, ρ – плотность материала анода, θ – угол между вектором **V**_c и вектором **n**₁ внешней нормали. Используя функцию (2) и соотношение (4) получаем распределение нормальной производной потенциала на границе анода

$$\partial u/\partial n_1 = (a_1 + j_0 \cos \theta)/(a_0 \kappa).$$
 (5)

Переход из участка I на участок II на графике зависимости $\eta(j_a)$ приводит к соответствующему переходу и на анодной границе из зоны I в зону II (линия *BC*). На этом участке анодной границы выполняется условие

$$j_a = j_{cr}, \ \partial u / \partial n_1 = j_{cr} / \kappa.$$
 (6)

Участку III на графике зависимости (2) соответствует зона III анодной границы, которая моделируется вертикальным прямолинейным участком AB; выход по току здесь практически равен нулю и растворение металла не происходит. Плотность тока на участке AB изменяется от j_{cr} в точке B до нуля в бесконечно удаленной точке A. Положения точек перехода B и C неизвестны и определяются в процессе решения задачи.

Введем комплексный потенциал электриче-

$$W_1(z_1) = v(z_1) + i u(z_1), z_1 = x_1 + i y_1$$

 $(v(z_1) - функция тока)$ в области межэлектродного промежутка [7]. Используя безразмерные переменные $x = x_1/H$, $y = y_1/H$, $n = n_1/H$, где $H = \kappa(u_a - u_c)/j_0$ [8], перейдем к безразмерному комплексному потенциалу

$$W(z) = \frac{W_1(z) - i u_c}{u_a - u_c} = \varphi(z) + i \psi(z), \ z = x + i y ,$$

ее мнимая часть — функция $\Psi(z)$ в области межэлектродного промежутка является гармонической и удовлетворяет следующим граничным условиям:

> $\psi = 0$ (на границе *DE* катода), $\psi = 1$ (на всей границе *ABCD* анода), $\partial \psi / \partial n = 0$ (на границе *AE* катода).

Скорость перемещения точек границы *CD* анода определяется законом (5), который в безразмерных переменных имеет вид

$$\partial \psi / \partial n = b(a + \cos \theta), \ b = 1/a_0, \ a = a_1 / j_0.$$
 (7)

На участке *BC* анода, согласно условию (6), выполняется равенство

$$\partial \psi / \partial n = c, \ c = j_{cr} / j_0.$$
 (8)

Используя обозначения, принятые в формулах (7), (8) и соотношение (3), получим

 $a = c(a_0 - \eta_{cr}).$

Целью решения задачи является определение формы анодной границы с учетом геометрии межэлектродного промежутка и перечисленных граничных условий.

Двумерное потенциальное электрическое поле моделируется фиктивным плоскопараллельным потенциальным течением идеальной несжимаемой жидкости [8]. Гидродинамическим аналогом напряженности электрического поля является скорость течения, которая на участке *CD* анодной границы в соответствии с условием (7) изменяется по закону

$$V = b(a + \cos \theta), \tag{9}$$

здесь V – модуль, θ – аргумент вектора скорости.

На участке *BC* анода, согласно (8), модуль скорости постоянная величина

$$V = c . (10)$$

РЕШЕНИЕ ЗАДАЧИ

Используя гидродинамическую аналогию электрического поля, рассмотрим фиктивное течение идеальной несжимаемой жидкости в односвязной области G_z в плоскости переменной *z*, ограниченной кривой, состоящей из границ катода и анода (рис. 2).

Гидродинамическим аналогом исходной задачи является задача по определению свободных границ CD и BC с заданными законами изменения скорости (9) и (10), соответственно. Поток создается системой непрерывно распределенных источников вдоль линии AE и стока в точке D.

Введем вспомогательное комплексное переменное $t = \xi + i\delta$, изменяющееся в области $G_t = (|t| < 1, \xi > 0, \delta > 0)$ (рис. 3, *a*), и будем искать функцию z(t), отображающую область G_t на область G_z , с соответствием точек, указанным на рис. 2, 3, *a*.

Рис. 3. *а* – плоскость параметрической переменной *t* ; *б* – область изменения комплексного потенциала

Мнимая часть комплексного потенциала *W*(*t*) удовлетворяет граничным условиям

$$\Psi(t) = \begin{cases} 1, & t = \exp(i\,\sigma), \ \sigma \in (0, \pi/2], \\ 1, & t = i\delta, \ \delta \in [0, 1]; \ t = \xi, \ \xi \in [0, d] \\ 0, & t = \xi, \ \xi \in [p, 1), \end{cases}$$

а на границе диэлектрического покрытия *AE* постоянна ее действительная часть. Не нарушая общности, будем считать, что

$$\varphi(\xi) = 0, \quad \xi \in [d, p].$$

Область изменения комплексного потенциала представлена на рис. 3, *б*. Используя метод конформных отображений [7], получим

$$\frac{dW}{dt} = \frac{Mt(1+t^2)(1-t^2)^{-1}}{\sqrt{(t^2-d^2)(1-t^2d^2)(t^2-p^2)(1-t^2p^2)}},$$

Интегрированием функции dW/dt по дуге окружности бесконечно малого радиуса с центром в точке t = 1 с помощью теории вычетов [7], найдем постоянную M

$$M = 2(1-d^2)(1-p^2)/\pi$$

Введем функцию Жуковского [9]

$$\chi(t) = \ln\left(\frac{1}{V_0}\frac{dW}{dz}\right) = r - i\theta, \quad r = \ln\frac{V}{V_0}, \quad (11)$$

где $V_0 = c$ – значение модуля скорости на участке *BC* анодной границы. Представим функцию $\chi(t)$ в виде суммы [9]

$$\chi(t) = \chi_*(t) + \omega(t), \qquad (12)$$

где $\chi_*(t) = r_* - i\theta_*, r_* = \ln(V_* / V_0) - функция Жу$ ковского для течения по заданной схеме (рис. 2) $с условием <math>V_* = V_0$ на всем участке *BCD* анодной границе, а $\omega(t) - ф$ ункция, аналитическая в области G_t и непрерывная вплоть до ее границ. На границе области G_t функции $\chi(t)$ и $\chi_*(t)$ удовлетворяют условиям

$$\operatorname{Re} \chi(i\delta) = \operatorname{Re} \chi_*(i\delta) = 0, \quad \delta \in [0, 1].$$
(13)

$$\operatorname{Im} \chi(\xi) = \operatorname{Im} \chi_*(\xi) = \begin{cases} -\pi/2, & \xi \in [0, d], \\ -\pi, & \xi \in (d, p), \\ 0, & \xi \in (p, 1], \end{cases}$$
(14)

$$b(a + \cos\theta(t)) = V_0 \exp(r(t)), \ t = \exp(i\sigma), \quad (15)$$

Re
$$\chi_*(t) = 0$$
, $t = \exp(i\sigma)$, $\sigma \in [0, \pi/2]$. (16)

Рассмотрим вспомогательную функцию

$$\zeta = \exp(\chi) = \frac{1}{V_0} \frac{dW}{dz} = \frac{V}{V_0} \exp(-i\theta) = V_x - iV_y$$

В силу условия (10) и известного направления граней катода область течения на плоскости переменной ζ частично известна; соответствие точек и границ указано на рис. 2, 4.

Участку *BC* анодной границы соответствует дуга окружности единичного радиуса с центром в начале координат. Участку *CD* также соответствует дуга кривой, уравнение которой неизвестно и ее форма определяется в процессе решения задачи [6]. В частном случае при использовании зависимости (1) эта кривая совпадает с дугой окружности [2].

Рис. 4. Форма области течения на плоскости переменной ζ

При обходе точки $t_B = 0$ по бесконечно малому контуру против часовой стрелки вектор $t - t_B$ поворачивается на $\pi/2$, а вектор $\zeta(t) - \zeta_B$, где $\zeta_B = -i$, в плоскости ζ поворачивается на $3\pi/2$. Конформность отображения в точке t_B нарушается, и $\zeta(t) + i = O(t^3)$ при $t \to 0$, т. е.

$$\zeta'(t) = 0, \ \zeta''(t) = 0 \ \text{при} \ t = 0.$$
 (17)

Из выражения (15) следует

$$\theta_{cr} = \theta(i) = \arccos(V_0/b - a). \tag{18}$$

Для построения функции $\chi_*(t)$ рассмотрим функцию $F(t) = td\chi_*/dt$. Согласно граничным условиям (13), (14) и (16), функцию F(t) можно аналитически продолжить на всю плоскость. Функция F(t) имеет полюса первого порядка в точках t = d и t = p с вычетами, соответственно равными 1/2 и –1. Используя метод особых точек Чаплыгина [9], построим функцию F(t)и, интегрируя ее, найдем функцию $\chi_*(t)$

$$\chi_*(t) = \frac{1}{2} \ln \frac{(t-d)(1+td)}{(t+d)(1-td)} - \ln \frac{(t-p)(1+tp)}{(t+p)(1-tp)}.$$
 (19)

Из сравнения граничных условий функций $\chi(t)$ и $\chi_*(t)$ для функции $\omega(t)$ получим нелинейную краевую задачу

Re
$$\omega(i\delta) = 0$$
, $\delta \in [0, 1]$; Im $\omega(\xi) = 0$, $\xi \in [0, 1]$, (20)
 $b(a + \cos(T + \mu)) = V_0 \exp(\lambda)$, (21)

где

$$T = \operatorname{Im} \chi_*(\exp(i\sigma)), \mu = \operatorname{Im} \omega(\exp(i\sigma)),$$
$$\lambda = \operatorname{Re} \omega(\exp(i\sigma)), \quad \sigma \in [0, \pi/2].$$

Функция $\omega(t)$, дающая решение краевой задачи (20), (21), в силу условий (20) разлагается в степенной ряд с вещественными коэффициентами

$$\omega(t) = \sum_{k=1}^{\infty} c_{2k-1} t^{2k-1} .$$
 (22)

В силу граничного условия (13) из равенств (17), следует

$$\theta'(\delta) = 0, \ \theta''(\delta) = 0 \text{ при } \delta = 0.$$
 (23)

Первое равенство в соотношениях (23) совпадает с условием «плавного» отрыва [10], введенным в теории струй идеальной жидкости.

Используя соотношения (12), (19) и (22), найдем

$$\theta'(\delta) = \frac{d}{d^2 + \delta^2} - \frac{d}{1 + d^2 \delta^2} - \frac{2p}{p^2 + \delta^2} + \frac{2p}{1 + p^2 \delta^2} - \sum_{k=1}^{\infty} c_{2k-1} (2k-1) \delta^{2k-2}.$$
(24)

Отсюда, при $\delta = 0$, получается уравнение

$$2dp^2 - p(d^2 - 1) - 2d = 0.$$

Отбрасывая, отрицательный корень, найдем

$$p = \frac{d^2 - 1 + \sqrt{\left(1 - d^2\right)^2 + 16d^2}}{4d}.$$
 (25)

Дифференцирую выражение (24), найдем $\theta''(\delta)$, очевидно, что второе равенство в условиях (23) справедливо при любых значениях параметров *d* и *p*.

Геометрические характеристики течения определяются из параметрической зависимости

$$\frac{dz}{dt} = \frac{\exp(-\chi(t))}{V_0} \frac{dW}{dt} =$$

$$= \frac{M}{V_0} \frac{t(1+t^2)((t-p)(1+tp))^{1/2} \exp(-\omega(t))}{(1-t^2)(t-d)(1+td)((t+p)(1-tp))^{3/2}}.$$
(26)

Интегрированием функции (26) по полуокружности бесконечно малого радиуса с центром в точке t = d, найдем расстояние h между линиями AB и AE

$$h = \frac{2d(1-p^2)\exp(-\omega(d))}{V_0(d+p)(1-pd)} \sqrt{\frac{(p-d)(1+pd)}{(p+d)(1-pd)}}$$

Интегрируя dz/dt по дуге окружности бесконечно малого радиуса с центром в точке t = 1, найдем величину межэлектродного зазора *s* на бесконечности в точке *D*

$$s = (V_0 \exp(\omega(1)))^{-1}$$

Для численного решения задаются значения величин j_0 , j_{cr} , η_{cr} и a_0 . Значение коэффициента a_1 находится из формулы (3). Коэффициенты разложения (22) определяются методом коллокаций, таким образом, чтобы на границе *CD* удовлетворялось условие (21) в конечном числе точек. Для определения параметров *d* и *p* служат уравнения (18), (25).

РЕЗУЛЬТАТЫ РАСЧЕТОВ

При $j_0 = 100$ А/см², $\eta_{cr} = 0,8$ и $a_0 = 0,9$ выполнены расчеты для трех значений j_{cr} равных, со-

ответственно, 60, 80 и 90 А/см². Коэффициент a_1 принимает значения 6, 8, 9 соответственно. Решение задачи выполнено с сохранением 20 членов в разложении (22).

Результаты расчета геометрических параметров θ_{cr} , *h*, *s* приведены в табл. 1.

Таблица 1

r csymbrarbi pac iera				
j_{cr} , A/cm ²	θ_{cr}	h	S	
60	1,0701	0,5149	0,8491	
80	0,8763	0,4415	0,8333	
90	0,7670	0,4069	0,8257	

Ρουνηκτατι ηθευετά

Результаты расчета координат точек анодной границы представлены на рис. 5. Участок CD анодной границы, на которой выполняется условие (7) отмечен сплошной линией, штриховкой — переходной участок BC, на которой выполняется условие (8).

Видно, что в этом случае, при увеличении значения j_{cr} возрастает длина переходного участка анодной границы, а расстояние h между электроизолированной гранью катода и необрабатываемым участком анодной границы уменьшается. Изменение зазора *s* незначительное.

Рис. 5. Результаты расчета анодных границ (*1* – *j_{cr}* = 60; *2* – *j_{cr}* = 80; *3* – *j_{cr}* =90 А/см²)

Рассмотрим другой случай, когда варьируемым является параметр η_{cr} . При $j_0 = 100$ A/см², $j_{cr} = 80$ A/см² и $a_0 = 0,9$ выполнены расчеты для трех значений η_{cr} равных соответственно 0,7; 0,8 и 0,9. При этом коэффициент a_1 принимает значения 16, 8, 0.

Результаты расчета геометрических параметров θ_{cr} , *h*, *s* для этого случая приведены в табл. 2.

гезультаты расчета				
η_{cr}	θ_{cr}	h	S	
0,7	0,9764	0,4270	0,7759	
0,8	0,8763	0,4415	0,8333	
0,9	0,7670	0,4544	0,9000	

Таблица 2

На рис. 6 представлены графики анодных границ. При $\eta_{cr} = a_0 = 0,9$ полученные результаты соответствую зависимости (1).

Уменьшение значения η_{cr} , при прочих равных условиях приводит к уменьшению длины переходного участка *BC* анодной границы и зазора *s*. Производительность процесса ЭХО в рабочей зоне при этом также убывает.

Рис. 6. Результаты расчета анодных границ $(1 - \eta_{cr} = 0.7; 2 - \eta_{cr} = 0.8; 3 - \eta_{cr} = 0.9)$

На рис. 7 представлена область изменения функции $\zeta = dW/(V_0 dz)$ для частного случая, полученная при $j_0 = 100$ А/см², $\eta_{cr} = 0.8$, $a_0 = 0.9$ и $j_{cr} = 60$ А/см².

Рис. 7. Форма области течения на плоскости переменной ζ при $j_0 = 100$ A/см², $\eta_{cr} = 0.8$, $a_0 = 0.9$, $j_{cr} = 60$ A/см²

Построенная граница годографа скорости (рис. 7), для данного частного случая, подтверждает принятое a priori предположение о форме неизвестной границы области изменения функции ζ, представленной на рис. 4.

Полученные результаты позволяют провести исследование форм обрабатываемой поверхности, получающиеся при различных соотношениях физических параметров.

СПИСОК ЛИТЕРАТУРЫ

Давыдов А. Д., Козак Е. Высокоскоростное электрохимическое формообразование. М.: Наука, 1990. 272 с.

Житников В. П., Ошмарина Е. М., Федорова Г. И. Использование разрывных функций для моделирования растворения при стационарном электрохимическом формообразовании // Изв. вузов. Математика. 2010. № 10. С. 77–81.

Маннапов А. Р., Житников В. П., Поречный С. С. Полуэмпирическая модель нестационарного процесса импульсной электрохимической обработки вибрирующим электродом-инструментом в локально-одномерном приближении // Вестник УГАТУ. 2011. Т. 15, № 3(43). С. 60–66.

Седыкин Ф. В., Орлов Б. П., Матасов В. Ф. Исследование анодного выхода по току при электрохимической обработке с применением постоянного и импульсного напряжения // Технология машиностроения. 1975. № 39. С. 3–10.

Миназетдинов Н. М. Гидродинамическая интерпретация одной задачи теории размерной электрохимической обработки металлов // ПММ. 2009. Т. 73. Вып. 1. С. 60–68.

Миназетдинов Н. М. Об одной задаче теории размерной электрохимической обработки металлов // ПМТФ. 2009. Т. 50, № 5. С. 214–220.

Лаврентьев М. А., Шабат Б. В. Методы теории функций комплексного переменного. М.: Наука, 1987. 688 с.

Клоков В. В. Электрохимическое формообразование. Казань: КГУ, 1984. 80 с.

Гуревич М. И. Теория струй идеальной жидкости. М.: Наука, 1979. 536 с.

Биркгоф Г., Сарантонелло Э. Струи, следы и каверны. М.: Мир, 1964. 466 с.

ОБ АВТОРАХ

Миназетдинов Наиль Миргазиянович, доц. каф высшей математики Камск. гос. инженерноэкономическ. акад. Дипл. механик (Казанск. гос. ун-т, 1985). Канд. физ.-мат. наук по механике жидкости, газа и плазмы (Казанск. гос. ун-т, 1994). Иссл. в обл. приложения методов теории струйных течений в задачах электрохимическ. обработки металлов.