Вестник УГАМД

ТЕХНОЛОГИЯ МАШИНОСТРОЕНИЯ

УДК 621.793

Т. Д. Кожина, А. Е. Сергеев

РАЗРАБОТКА ТЕХНОЛОГИИ НАНЕСЕНИЯ СВЕРХТВЕРДЫХ НАНОКОМПОЗИТНЫХ ПОКРЫТИЙ НА ОСНОВЕ СОЕДИНЕНИЙ НИТРИДОВ МЕТАЛЛОВ МЕТОДОМ МАГНЕТРОННОГО РАСПЫЛЕНИЯ

В данном исследовании проводится анализ влияния дуальных импульсных магнетронно-распылительных систем на свойства и структуру покрытий AITiN для режущего инструмента. Даются рекомендации для импульсного магнетронного распыления. Магнетронное распыление; нанокомпозитные покрытия; структура покрытий; режущий инструмент

Покрытия широко используются в авиационной промышленности, автомобилестроении, машиностроении и других наукоемких отраслях [1]. Нанесение нанокомпозитных покрытий является одним из основных направлений технологии и материаловедения на сегодняшний день, особенно в области машиностроения и авиационной промышленности [1, 2]. Высокие темпы развития этих отраслей требуют непрерывного повышения качества и эксплуатационных свойств покрытий. Реализация этих требований напрямую зависит от достижений в конструировании оборудования и совершенствования технологий получения покрытий [1, 2].

В настоящее время наиболее перспективными методами нанесения покрытий являются вакуумные ионно-плазменные методы. Это обусловлено их экологической безопасностью, высокой чистотой технологических процессов и качеством продукции. Также известно, что в иониизированном или возбужденном состоянии атомы и молекулы легче взаимодействуют друг с другом, делая процесс нанесения покрытий более эффективным. Именно поэтому в работе используется метод магнетронного распыления в вакууме.

МЕТОД МАГНЕТРОННОГО РАСПЫЛЕНИЯ

В основе метода магнетронного распыления лежит процесс ионного распыления – бомбардировки поверхности мишени ионами инертного газа. При приложении высокого напряжения в атмосфере инертного газа (как правило, аргона) возникает тлеющий разряд. Ионы инертного газа из плазмы, обладающие высокой энергией, ударяются в мишень, включенную как катод. За счет ударного импульса происходит высвобождение материала, он распыляется, минуя промежуточную жидкую фазу. С помощью магнитных полей (замкнутых и разомкнутых) осуществляется удлинение пути электронов (по спирали вдоль линий магнитного поля), увеличивается плотность плазмы и ударная энергия. Сзади мишени располагается магнитная система, определяющая распределение области распыления материалов по всей поверхности мишени [3, 7].

Проведение экспериментов осуществлялось на установке Unicoat-400 (ООО НПФ «Элан-Практик», г. Дзержинск). Установка магнетронного распыления и схема процесса нанесения представлены на рис. 1. Техпроцесс нанесения покрытий методом магнетронного распыления осуществлялся по следующей схеме [3]:

- загрузка;
- откачка вакуумной камеры;
- ионная очистка;
- нанесение металлического подслоя;
- нанесение реактивного подслоя;
- остывание;
- выгрузка изделий.

ПРОВЕДЕНИЕ ЭКСПЕРИМЕНТОВ И АНАЛИЗ ПОЛУЧЕННЫХ РЕЗУЛЬТАТОВ

Было проведено исследование влияния режимов нанесения на свойства получаемых покрытий. Результаты влияния импульсных характеристик [4] на свойства покрытия Al-Ti-N представлены в таблице (в дальнейшем планируется изучение влияния частотных характеристик на другие покрытия и последующая их корреляция с предыдущими результатами).

Контактная информация: root@rgata.ru

Рис. 1. Установка магнетронного распыления Unicoat-400 и схема нанесения покрытия

Механические и трибологические	свойства
пленок Al-Ti-N	

C	Импульсные параметры		
Своиства пленки	100/1,0	100/2,5	100/5,0
Al/(Ti+Al) at.%	58,5	57,3	60,4
Толщина пленки, мкм	1,2	0,8	1
Поверхностная ше- роховатость, (Rs) нм	5,45	2,43	1,04
Остаточное напря- жение, ГПа	-3,4	-4	-5,6
Наноидентационная твердость, ГПа	34,3±3,8	37±3,9	41,1±3,3
Модуль Юнга, ГПа	370,8 ± ± 26,3	385,6 ± ± 31,9	411,4 ± ± 32,5
H/E	0,092	0,096	0,01
Коэффициент тре- ния	0,38	0,43	0,46
Скорость износа, 10 ⁻⁶ мм ³ /(Н·м)	2,9	3,2	3,4
Свойства пленки	350/0,4	350/1,0	350/1,4
Al/(Ti+Al) ar.%	60,9	67,5	69,7
Толщина пленки, мкм	14,1	0,9	1,2
Поверхностная ше- роховатость, (Rs) нм	2,16	2,01	2,25
Остаточное напря- жение, ГПа	-7,3	-12,2	-12,8
Наноидентационная твердость, ГПа	42,4±2,9	43,6±2,8	48,0±3,6
Модуль Юнга, ГПа	432,4 ± ± 30,4	450,5 ± ± 28,4	515,5 ± ± 43,7
H/E	0,098	0,097	0,093
Коэффициент тре- ния	0,46	0,87	0,63
Скорость износа, 10 ⁻⁶ мм ³ /(Н·м)	3,9	3,8	4

Был проведен анализ морфологии поверхности покрытия. Двух- и трехмерные поверхностные морфологии пленок Al-Ti-N, нанесенных в различных условиях асинхронного пульсирования, измерялись при помощи атомно-силовой микроскопии (ACM) (рис. 2) и растровой электронной микроскопии (РЭМ), показаны на наклонных микроснимках поперечного сечения (рис. 3).

Рис. 2. Двух- и трехмерные ACM поверхностные морфологии пленок Al-Ti-N, нанесенных при различных параметрах асинхронного пульсирования с разными максимальными значениями ионной энергии 29N + 2: *a* – 100 кГц и 1,0 мкс (72 эВ), *б* – 100 кГц и 2,5 мкс (84 эВ); *в* – 100 кГц и 5,0 мкс (122 эВ); *г* – 350 кГц и 1,0 мкс (180 эВ), *д* – 350 кГц и 1,4 мкс

Пленка, которая наносилась в условиях 100/5,0, показывает очень плотную структуру зерен и самую гладкую поверхность, что свидетельствует о значительном росте ионного потока в области ионной энергии «В», в которой достигалась общая ионная энергия 29N+122 эВ, и общий ионный поток составил 9×106 единиц в секунду. В этом случае большое количество ионов с бомбардировкой среднего энергетического уровня увеличивает адатомную мобильность и диффузность посредством моментального переноса от столкновения [5]. На ранней стадии роста пленки (<150 нм) возникает большое число центров ядрообразования, приводя к образованию тонкой столбчатой структуры (<10 нм), как видно на рис. 3, в.

Рис. 3. Поперечные микроснимки пленок Al-Ti-N, нанесенных в различных условиях асинхронного пульсирования, полученные методом РЭМ: *a* – 100 кГц и 1,0 мкс (72 эВ); *б* – 100 кГц и 2,5 мкс (84 эВ); *в* – 100 кГц и 5,0 мкс (122 эВ); *г* – 350 кГц и 0,4 мкс (177 эВ); *∂* – 350 кГц и 1,0 мкс (180 эВ); *e* – 350 кГц и 1,4 мкс (200 эВ)

В условиях 350/1,0 и 350/1,4 поверхностная шероховатость пленок Al-Ti-N в дальнейшем увеличивается, и на поверхности формируются большие 3D-островки пирамидальной формы, сопровождаемые впадинами, желобками и пробелами/пустотами между этими 3D-островками (рис. 2, δ , ∂).

5

На фотомикроснимках поперечного сечения пленок 350/1,0 и 350/1,4 (рис. 3, ∂ , e) показана микроструктура, отличная от той, которая образуется в условиях пульсирования 100 кГц. В этих случаях столбчатые кристаллы все еще наблюдаются, но повторное ядрообразование на отдельных столбцах заметно по всей длине пленки [5]. Этот феномен более четко выражен в пленке 300/1,4. Поступление высокоэнергетической ионной бомбардировки ($E_{\rm общ} > 180$ эВ) нарушит непрерывный рост столбчатых кристаллов (рис. 3, c, ∂), что в свою очередь увеличит плотность точечных и линейных дефектов и высокое остаточное напряжение.

Таким образом, короткие столбчатые кристаллы были сформированы, несмотря на то, что лишь несколько зерен росли по всей толщине пленки. В данном случае имеет место не поликристаллическая структура, так как было обнаружено, что большинство зерен имеют ориентацию (111).

На рис. 3, *е* верхушки столбцов имеют скошенную грань из-за кинетической шероховатости [6], которая в сочетании с атомным затенением ведет к образованию глубоких воронок между столбцами и открытыми границами столбцов. Морфология поверхности пленки, показанная на микроснимках, также согласуется с результатами ACM, показанными на рис. 2

Далее приведены примеры металлорежущего инструмента с покрытиями Al-Ti-N и TiN.

Рис. 4. Металлорежущий инструмент с покрытиями $Al_{0.64}Ti_{0.36}N$, $Al_{0.55}Ti_{0.45}N$, TiN

Было сделано сравнение дисков-свидетелей с покрытием и без покрытий и было доказано, что полученное покрытие значительно улучшает свойства образца.

ПРОВЕДЕНИЕ ИСПЫТАНИЙ РЕЖУЩЕГО ИНСТРУМЕНТА С НАНОКОМПОЗИТНЫМ ПОКРЫТИЕМ NC-ALN/NC-TIN (ALTIN)

В первом эксперименте покрытие Al-Ti-N было нанесено на концевую фрезу \emptyset 12,5 мм. Обработка велась на следующих режимах: Vc = 180 м/мин; fz = 0,35 мм/зуб, сухое фрезерование. Материал детали ВТЗ. Испытания проводились на фрезерном многокоординатном станке модели 400V. Были выработаны по 3 фрезы с каждым из покрытий.

Фрезы (3 шт) с нанесенным покрытием NC-AlN / NC-TiN (Al-Ti-N) были испытаны в процессе резания и дали положительный результат (рис. 5). Стойкость инструмента с покрытием в 2,5 раза превысила стойкость инструмента без покрытия.

Были проведены эксперименты по испытанию строгальных резцов с нанокомпозитным покрытием. Обобщенные результаты проведенных испытаний представлены на рис. 6.

Полученные данные показывают снижение параметра шероховатости Ra в 1,5 раза (с 1,2 мкм до 0,8 мкм), увеличение стойкости инструмента в 2 раза (инструмент с покрытием TiN отработал на 12 деталях (зубчатые колеса), а полученное покрытие Al-Ti-N позволило обработать 25 деталей).

Рис. 6. Испытание покрытия Al-Ti-N на строгальных резцах (строгальные резцы Ф150 мм, материал Р18. Материал детали: 20ХЗМВФ-Ш. Режимы резания: S = 60 сек/зуб, n = 196 дв.ход/мин, сухое зубострогание)

выводы

1. Использование контролируемой ионной бомбардировки для сохранения максимальной ионной энергии на уровне менее 120 эВ и увеличения ионного потока в средней области ионной энергии «В», будет увеличивать атомную мобильность, усиливать плотность пленки и уменьшать размер столбчатых кристаллов пленки, за счет чего увеличится твердость покрытия, модуль Юнга, уменьшится поверхностная шероховатость при высокой адгезии покрытия к подложке.

2. Повышение эффективности процесса резания за счет использования нанокомпозитных пленок на основе нитридов металлов: (увеличение стойкости в 2–4 раза (в зависимости от вида покрытия), увеличение скорости обработки в 1,5–3 раза).

СПИСОК ЛИТЕРАТУРЫ

1. Кожина Т. Д., Ерошков В. Ю., Сергеев А. Е. Свойства нанокомпозитных покрытий, полученных методом магнетронного распыления // Матер. VII междунар. науч.-практ. конф. Прага, 2011. С. 11–14

2. Кожина Т. Д., Ерошков В. Ю. Разработка функциональных наноструктурированных покрытий режущего инструмента и технологической оснастки для авиационной техники, обладающих повышенными износостойкими свойствами // Вестник РГАТА им. П. А. Соловьева. 2010. № 1. С. 121–127.

3. **Кузьмичев А. И.** Магнетронные распылительные системы. Киев: Аверс 2008.

4. Сергеев А. Е., Ерошков В. Ю. Механические и трибологические свойства пленок Al-Ti-N // Вестник РГАТА им. П. А. Соловьева. 2011. № 1 (19). 87 с.

5. Sproul W. D., Christie, D. J., Carter D. C. Control of reactive sputtering processes // Thin SolId FIlms. 2005. № 491. P. 1–17

6. Influence of reactive sputter deposition conditions on crystallization of zirconium oxide thin films / G. Sethi [et al.] // Journal of vacuum science technology. 2009. № 27 (3). P. 577–583 7. Соловьев А. А. Устройства со скрещенными электрическим и магнитным полями для нанесения тонкопленочных покрытий на подложки большой площади: автореф. дисс. на соиск. учен. степени канд. техн. наук. Томск, 2007.

7

ОБ АВТОРАХ

Кожина Татьяна Дмитриевна, проф. д-р техн. наук, проректор по науке и инновациям Рыбинск. гос. авиац. техн. ун-та им. П. А. Соловьева. Иссл. в обл. нанотехнологий и наноматериалов, авиационных двигателей.

Сергеев Александр Евгеньевич, асп. каф. резания материалов станки и инструменты им. С. С. Силина того же ун-та. Иссл. в обл. нанотехнологий и нано-материалов, авиационных двигателей