Вестник УГАМ

УПРАВЛЕНИЕ, ВЫЧИСЛИТЕЛЬНАЯ ТЕХНИКА И ИНФОРМАТИКА

УДК 621.794

А. И. Воронкова, Л. М. Котляр

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ЗАДАЧИ О ПРОФИЛИРОВАНИИ ИНСТРУМЕНТА ПРИ ЭЛЕКТРОХИМИЧЕСКОЙ ОБРАБОТКЕ

В работе построена математическая модель плоской задачи электрохимической обработки (ЭХО) металла с учетом влияния гидродинамики течения электролита в межэлектродном канале (МЭК). Получено решение задачи о профилировании участка безкавитационного катода в областях с большим градиентом давления. Электрохимия; анод; катод; nomeнциaл; кавитация; градиент; гидродинамика; электродинамика

Электрохимическая обработка металлов занимает важное место в современном машиностроении при производстве изделий, обработка которых традиционными механическими способами затруднена или невозможна. Одной из основных проблем в технологии ЭХО является точность анодного формообразования, повышение которой, в частности, связано с развитием математических методов расчета поверхности детали. Заметное влияние на точность формообразования может оказать переменный выход по току, высокая скорость прокачки электролита, начальная его загазованность, выделение газообразных продуктов реакции [1, 2, 3].

1. СОСТОЯНИЕ ВОПРОСА

Одной из актуальных задач теории ЭХО является изучение особенностей гидродинамики потока электролита и учета этих особенностей при проектировании формы катода. Высокая скорость течения электролита в МЭК, начальная его загазованность, выделение газообразных продуктов реакции приводят к образованию кавитационных полостей на границе катода в окрестности областей с большими градиентами давления. Каверны частично экранируют катод, что существенно влияет на форму границы обрабатываемой поверхности. Для устранения кавитационных полостей необходимо проектировать форму катода.

В данной работе решена задача о проектировании участка катода в области с большим градиентом давления при ЭХО металла катодами прямоугольной формы.

2. ПОСТАНОВКА ЗАДАЧИ

Рассматривается плоская задача формообразования анодной границы *SB* при стационарном режиме ЭХО катодом *ACDB* с линейными границами AC, DB и криволинейным участком CD (на рис. 1, в плоскости z = x + iy, показана правая половина схемы МЭК, AS – ось симметрии). Течение электролита в МЭК направлено от точки A к точке B. Начало координат выбрано в точке O. Ось абсцисс перпендикулярна направлению подачи катода и направлена по грани DB. Ширина МЭК в окрестности точки B равна H, где H – характерная длина, равная ширине МЭК в случае стационарной ЭХО при плоских параллельных границах электродов и выходе по току, равном единице.

Рис. 1. Схема МЭК

Для построения безкавитационного катода, форму криволинейного участка *CD*, получаемого в результате сглаживания острой кромки катода, будем строить таким образом, чтобы значение скорости течения электролита на этом участке было постоянным, равным V_0 . Скорость течения электролита на выходе из МЭК равна V_1 . Расход электролита равен q ($q = V_1H$).

Электростатическое поле в межэлектродном промежутке считается потенциальным. При допущении равномерной поляризации электродов границы электродов являются эквипотенциальными линиями электростатического поля. Согласно условию стационарности электрохимического формообразования [2, 3], и учитывая,

Контактная информация: (8552)39-66-74

что комплексные потенциалы *W* и *W_E* гидродинамического и электродинамического полей связаны соотношением

$$\frac{dW}{dz} = \frac{dW}{dW_E} \frac{dW_E}{dz}$$

на анодной границе SB

$$V = \frac{d\varphi}{d\varphi_E} (a + b\cos(\theta)), \qquad (1)$$

где V – модуль скорости течения электролита на анодной границе, θ – угол наклона вектора скорости к оси абсцисс, φ_E , φ – потенциалы электростатического и гидродинамического полей соответственно, *а* и *b* постоянные, зависящие от свойства электролита.

Требуется определить форму поверхности анода и криволинейного участка катода.

3. МЕТОДИКА ИССЛЕДОВАНИЯ

Для решения задачи введем вспомогательное комплексное переменное $u = \xi + i\eta$, изменяющееся в области D_u – прямоугольнике со сторонами $\pi/2$, $\pi\tau/4$ ($\tau = i|\tau|$) (рис. 2), и будем искать функцию Z(u), конформно отображающую область D_u на область течения D_z в плоскости z = x + iy с соответствием точек, указанном на рис. 1, 2.

Рис. 2. Область изменения переменной и

Определим две аналитические функции: комплексный потенциал течения электролита $W(u) = \varphi(u) + i \psi(u)$ и функцию Жуковского [4]

$$\chi(u) = \ln\left(V_0 \frac{dZ(u)}{dW(u)}\right).$$
 (2)

Область изменения W(u) представлена на рис. 3. Функция dW / du мнима на вертикальных сторонах, вещественна на горизонтальных сторонах прямоугольника D_u и имеет про-стые полюса в точках $A(u = i\alpha)$, $B(u = \pi/2)$ и простые нули в точках $C(u = \pi\tau/4)$, $D(u = \pi/2 + \pi\tau/4)$, S(u = 0). Согласно принципу симметрии, функцию dW / du можно аналитически продолжить на всю плоскость.

Рис. 3. Область изменения W

По известным особенностям найдем [5]:

$$\frac{dW}{du} = N \frac{\vartheta_1(2u)\vartheta_1(u)}{\vartheta_2(u)\vartheta_3(u)\vartheta_1(u-i\alpha)\vartheta_1(u+i\alpha)} \times \frac{\vartheta_4(u)}{\vartheta_4(u-i\alpha)\vartheta_4(u+i\alpha)},$$

где $\vartheta_k(u)$, $(k = \overline{1,4})$ – тета-функции для периодов π и $\pi\tau$ [6]. Постоянная *N* определяется из условия, что расход жидкости в струе равен *q*. Определяя вычет функции *W*(*u*) в точке *B*, получим

$$N = \frac{2q}{\pi} \vartheta_2^2(i\alpha) \vartheta_3^2(i\alpha) \vartheta_4(0) \,.$$

Рассмотрим функцию Жуковского для течения электролита

$$\chi(u) = \ln\left(V_0 \frac{dZ(u)}{dW(u)}\right) = \ln\left(\frac{V_0}{V}\right) + i\theta(u)$$

На полигональных границах катода мнимая часть $\chi(u)$ кусочно постоянна, а на криволинейном участке реальная часть $\chi(u)$ равна нулю. На анодной границе *SB* выполняется условие стационарности формообразования (1). Таким образом, для функции $\chi(u)$ имеем следующие граничные условия:

$$\operatorname{Im}\chi(u) = -\pi/2 \quad (u = i\eta),$$

$$\operatorname{Im}\chi(u) = 0 \quad (u = \pi/2 + i\eta),$$

$$\operatorname{Re}\chi(u) = 0 \quad (u = \xi + \pi\tau/4),$$

$$\operatorname{Re}\chi(u) = \ln\left(\frac{d\varphi_E}{d\varphi} \cdot \frac{V_0}{a + b\cos\theta(u)}\right) \quad (u = \xi).$$

Для определения функции $d\phi_E / d\phi$ при $u = \xi$ отобразим область D_u (рис. 2) на верхнюю полуплоскость D_{ω} (рис. 4) с соответствием точек, указанном на рисунках, преобразованием

$$\omega(u) = sn(2K(2u/\pi - 1/2), k),$$

$$K = \frac{\pi}{2}\vartheta_3^2(0, \tau), \quad k = \left(\frac{\vartheta_2(0, \tau)}{\vartheta_3(0, \tau)}\right)^2,$$

где *sn*(*u*) – функция Якоби [6].

Рис. 4. Область изменения переменой ω

Рассмотрим комплексный потенциал $W_E(u) = \varphi_E(u) + i \psi_E(u)$ электростатического поля. Область изменения $W_E(u)$ представлена на рис. 5.

Рис. 5. Область изменения W_E

Производные функций, отображающих область D_{ω} (рис.4) на области изменения функций W(u), $W_E(u)$ (рис. 3, 4) с соответствием точек, указанном на рисунках, имеют вид:

$$\frac{dW}{d\omega} = \frac{q(1-\alpha)}{\pi(1-\omega)(\omega-\alpha)},$$
$$\frac{dW_E}{d\omega} = \frac{\sqrt{2(1-\alpha)}}{\pi(\omega-1)\sqrt{(1+\omega)(\omega-\alpha)}}$$

где $\alpha = \omega(ia)$.

Используя полученные формулы, найдем

$$\frac{dW_E}{dW} = \frac{1}{q} \sqrt{\frac{2(\omega - \alpha)}{(1 + \omega)(1 - \alpha)}}$$

На анодной границе

$$\frac{dW_E}{dW} = \frac{d\varphi_E}{d\varphi} \quad (-1 < \omega \le 1) \; .$$

Функцию Жуковского $\chi(u)$ для течения электролита будем искать в виде

$$\chi(u) = \chi_0(u) + f(u) ,$$

где $\chi_0(u) = r_0(u) + i\theta_0(u) - функция Жуковского$ для течения идеальной жидкости по схеме(рис. 1), когда на границе*SB* $<math>\theta_0 = 0$, а на границе *CD* $V = V_0$. Кроме того, $\chi_0(u)$ имеет в области D_u те же особенности, что и функция $\chi(u)$, а f(u) – аналитическая в D_u и непрерывная в \overline{D}_u функция.

Следуя работе [5], построим функцию $\chi_0(u)$ и уравнение для определения f(u).

Функция $d\chi_0$ / du вещественна при $u = \xi$, мнима при $u = i\eta$, $u = \pi/2 + i\eta$, $u = \xi + \pi\tau/4$ и имеет в точке S(u = 0) простой полюс с вычетом равным 1/2. Функцию $d\chi_0 / du$ можно продолжить на всю плоскость согласно принципу симметрии. С учетом граничных условий, эллиптическую функцию $d\chi_0 / du$ с периодами π и π т представим в виде линейной комбинации логарифмических производных тета-функций и затем интегрированием найдем

$$\chi_0(u) = \ln\left(\frac{\vartheta_4(u)}{\vartheta_1(u)}\right) + A_0 u + B_0$$

Используя граничные условия, найдем, что $A_0 = 0, B_0 = 0.$

Сравнивая граничные условия для функций $\chi(u)$ и $\chi_0(u)$, получим граничные условия для неизвестной функции f(u).

Im
$$f(u) = 0$$
 $(u = i\eta, u = \pi/2 + i\eta)$, (3)

Re
$$f(u) = 0$$
 $(u = \xi + \pi \tau/4)$, (4)

$$\operatorname{Re}\chi(u) = \ln\left(\frac{d\varphi_E}{d\varphi} \cdot \frac{V_0}{a + b\cos\theta(u)}\right) - \operatorname{Re}\chi_0 \qquad (5)$$
$$(u = \xi).$$

Для определения функции f(u) отобразим предварительно область D_u на полукольцо D_t (рис. 6) с помощью функции

$$t = \exp(2i(u - \pi\tau/4)). \tag{6}$$

Рис. 6. Область изменения переменной t

Учитывая граничное условие (3), функцию f(u) можно аналитически продолжить на все кольцо и представить в виде ряда Лорана с вещественными коэффициентами

$$f(t) = \sum_{n=-\infty}^{\infty} c_n t^n,$$

или, с учетом (6),

$$f(u) = \sum_{n=-\infty}^{\infty} c_n \exp(2ni(u - \pi\tau/4))$$

Используя граничное условие (4), найдем, что $c_0 = 0$ и $c_n = -c_{-n}$. Окончательно для функции f(u) получим следующее представление

$$f(u) = 2i\sum_{n=1}^{\infty} c_n \sin\left(2n(u - \pi\tau/4)\right)$$

При $u = \xi функция f(u)$ имеет вид

$$f(\xi) = 2\sum_{n=1}^{\infty} c_n \left(\cos(2n\xi) sh\left(\frac{\pi |\tau| n}{2}\right) + i \cdot \sin(2n\xi) ch\left(\frac{\pi |\tau| n}{2}\right) \right).$$
(7)

Граничное условие (5) с учетом (7) запишется в виде

$$2 \cdot \sum_{n=1}^{\infty} c_n \cos(2n\xi) sh\left(\frac{\pi |\tau| n}{2}\right) = \\ = \ln\left(\frac{d\varphi_E}{d\varphi} \cdot \frac{V_0}{a + b\cos(\theta)}\right) - r_0, \ r_0 = \operatorname{Re}\chi_0.$$

Отсюда получим бесконечную систему уравнений для определения c_n

$$c_n = \frac{2}{M} \int_{0}^{\pi/2} \left(\ln \left(\frac{d\varphi_E}{d\varphi} \cdot \frac{V_0}{a + b\cos(\theta)} \right) - r_0 \right) \cos(2n\xi) d\xi$$
$$M = \pi \cdot sh(\pi |\tau| n/2), \ n = \overline{1, \infty}.$$

Безразмерные координаты точек анодной границы и границы криволинейного участка катода определяются из (2) по формуле

$$\frac{Z(u)}{H} = \frac{1}{V_0 H} \int_0^u \frac{dW}{du} \exp(\chi) du$$

при $u = \xi$ и $u = \xi + \pi \tau/4$, соответственно.

4. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

На рис. 7 представлены результаты расчетов формы границы сглаженного участка катода и границы анода при ЭХО с постоянным выходом по току и одном отношении $V_0 / V_1 = 2$ для различных значений H_1 / H , где H_1 – половина ширины МЭК в окрестности точки A.

Рис. 7. Результаты расчета анодных границ при стационарной ЭХО:

4-5 ЭХО прямоугольными катодами 4) $H_1/H = 3$; 5) $H_1/H = 2$; 6) $H_1/H = 1,5$

Приведенные результаты и сравнение их с результатами расчета анодных границ, полученными с учетом влияния присоединенной кавитации (рис. 8), показывают, что кавитация достаточно сильно влияет на форму обрабатываемой детали. Проектирование безкавитационного катода позволяет получить поверхность детали с меньшими затратами на последующую механическую обработку. Наличие каверны на катоде может привести к неустойчивости течения в МЭК, что также влияет на качество обработки детали.

На рис. 9 представлены результаты расчетов формы границы сглаженного участка катода и границы анода при ЭХО с постоянным выходом по току и одном отношении $H_1 / H = 2$ для различных значений V_0 / V_1 .

при стационарной ЭХО:

Рис. 10. Результаты расчета анодных границ при стационарной ЭХО: 1) *a* = 1/3; *b* = 2/3; 2) *a* = 0; *b* = 1; 3) *a* = -1/5; *b* = 6/5

На рис. 10 представлено влияние переменного выхода по току на электрохимическое формообразование.

5. ПРИЛОЖЕНИЕ РЕЗУЛЬТАТОВ

Результаты данной работы были использованы для проектирования катода при обработке заготовки для получения колеса по схеме рис. 1.

выводы

Рассмотренная математическая модель безкавитационного течения в межэлектродном пространстве позволяет использовать ее для решения задач ЭХО при проектировании катодов с угловыми точками, в окрестности которых большие градиенты давления, и тем самым получать детали необходимой формы с меньшими затратами на обработку.

СПИСОК ЛИТЕРАТУРЫ

1. Зайцев А. Н., Житников В. П. Высокоскоростное анодное растворение в условиях нестационарности электродных потенциалов. Уфа: Гилем, 2005. 220 с. 2. Давыдов А. Д., Козак Е. Высокоскоростное электрохимическое формообразование. М.: Наука, 1990. 271 с.

3. Котляр Л. М., Миназетдинов Н. М. Определение формы анода с учетом свойств электролита в задачах электрохимической размерной обработки металлов // Прикладная механика и техническая физика. Новосибирск, 2003. Т. 44, № 3.

4. **Гуревич М. И.** Теория струй идеальной жидкости. М.: Наука, 1979. 536 с.

5. Киселев О. М., Котляр Л. М. Решение нелинейных задач теории струйных течений тяжелой жидкости. Казань: КГУ, 1978. 154 с.

6. Уитекер Э. Т., Ватсон Дж. Н. Курс современного анализа. Ч. 2. М.: Наука, 1962. 686 с.

ОБ АВТОРАХ

Котляр Леонид Михайлович, зав. каф. высш. матем. Камск. гос. инж.-экон. академии (ИНЭКА). Д-р физ.-мат. наук (Казанск. гос. ун-т, 1974), проф. Иссл. в обл. гидродинамики, газовой динамики.

Воронкова Анна Ивановна, доц. той же каф. Канд. физ.-мат. наук (Казанск. гос. ун-т, 1997). Иссл. в обл. гидродинамики.