ЭНЕРГЕТИКА, ЭЛЕКТРИФИКАЦИЯ И ЭНЕРГЕТИЧЕСКОЕ МАШИНОСТРОЕНИЕ

УДК 629.3:621.314.27

С. В. Шапиро, С. Р. Муфтиев

РАЗРАБОТКА СИСТЕМЫ СТАБИЛИЗАЦИИ НАПРЯЖЕНИЯ ТЯГОВОЙ ПОДСТАНЦИИ ГОРОДСКОГО ЭЛЕКТРОТРАНСПОРТА

Рассматривается вопрос использования метода стабилизации напряжения постоянного тока с использованием звена высокой частоты в тяговых подстанциях городского электрического транспорта, приводится описание и принцип работы стабилизатора напряжения, модель силовой части в системе моделирования Orcad 9.2, передаточная функция исполнительного органа системы стабилизации. Стабилизации напряжения постоянного тока; тяговая подстанция городского электротранспорта; стабилизатор напряжения

Согласно ГОСТ 6962-75, питание электрических цепей электрифицированного транспорта осуществляется от воздушной контактной сети постоянного тока напряжением 550 ± 150 В. Номинальное напряжение на выходе тяговой подстанции составляет 600 вольт, максимальное – 700 В.

Проведенные измерения напряжений холостого хода на тяговых подстанциях города Уфы показали, что в реальности оно поднимается до 900 В. Такое повышенное напряжение отрицательно сказывается на дорогостоящем коммутационном и преобразовательном электрооборудовании подвижного состава и часто приводит к выходу его из строя. С другой стороны, понижение напряжения контактной сети приводит к увеличению времени разгона двигателя электротранспортного средства и увеличению длины тормозного пути, а также перегреву силовых контактов и обмоток тягового двигателя. Ясно, что стабилизация напряжения сети питания трамваев и троллейбусов позволяет существенно повысить качество их работы – безопасность, надежность – и снизить расход электроэнергии.

Муниципальное управление электротранспорта городского округа города Уфы совместно с научно-исследовательской лабораторией кафедры физики Уфимской государственной академии экономики и сервиса разрабатывает систему стабилизации напряжения тяговых подстанций городского электротранспорта. Структурные схемы тяговых подстанций приведены на рис. 1, 2.

Тяговые подстанции городского электротранспорта относятся к электроприемникам первой категории. Питание подстанций системы централизованного электроснабжения должно осуществляться не менее чем двумя вводами от независимых источников.

От промышленной сети в ячейку ввода тяговой подстанции приходит напряжение 6 или 10 кВ (далее 10 кВ). Через понижающий трансформатор, выпрямительный блок, сборные шины, фидерные автоматы постоянное напряжение подается в контактную сеть электротранспорта.

В статье описывается модуль стабилизации напряжения для тяговых подстанций, основанный на использовании звена высокой частоты, как наиболее экономичный способ [1]. Система стабилизации напряжения состоит из инвертора, который преобразует постоянное напряжение 600 В в переменное с частотой 5 кГц, автотрансформатора, который служит для изменения амплитуды напряжения с частотой 5 кГц [3], выпрямителя на IGBT транзисторах, датчика напряжения и системы управления. Структурная схема системы стабилизации приведена на рис. 3.

1. ОПИСАНИЕ И ПРИНЦИП ДЕЙСТВИЯ СТАБИЛИЗАТОРА НАПРЯЖЕНИЯ

Силовая часть системы стабилизации напряжения приведена на рис. 4. В нее входит автономный инвертор, собранный по мостовой схеме на IGBT транзисторах Z1-Z4. Инвертор преобразует постоянное напряжение в переменное с частотой 5 кГц. Нагрузкой для инвертора является автотрансформатор, вторичная обмотка которого служит для получения различных по уровню напряжений на выходе. Выводы автотрансформатора подключены к выпрямителю, собранному по мостовой схеме на силовых диодах D1 и D2 и IGBT транзисторах Z5, Z6, которые работают в ключевом режиме. Изменяя длительность импульса напряжения затворэмиттер U_{39} IGBT транзисторов Z5, Z6 можно управлять напряжением на нагрузке, т. е. контактной сети.

Контактная информация: muftiev@yandex.ru

Рис.1. Структурная схема тяговой подстанции

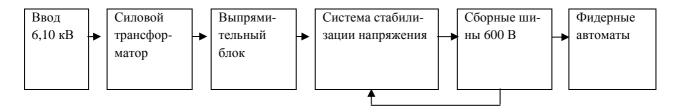


Рис. 2. Структурная схема тяговой подстанции с системой стабилизации напряжения 600 В

Рис. 3. Структурная схема системы стабилизации напряжения

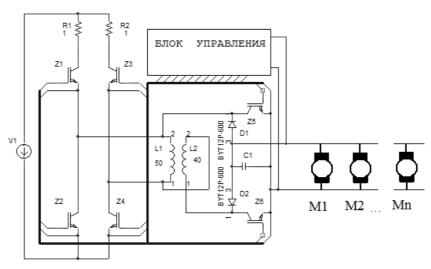
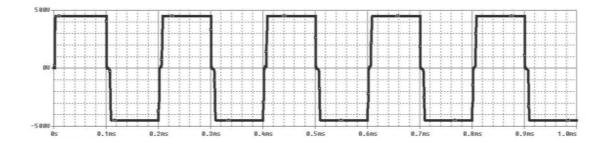



Рис. 4. Силовая часть системы стабилизации

Блок управления выполняет несколько функций: управляет работой транзисторных ключей инвертора, регулирует угол открытия транзисторов выпрямителя, сравнивает напряжение в контактной сети с эталонным значением. М1, М2, Мп – тяговые двигатели электротранспорта на участке контактной сети.

Напряжение на выходе выпрямительного агрегата тяговой подстанции (на схеме обозначено V_1) подается на вход автономного инвертора, собранного по мостовой схеме на транзисторах Z1–Z4. В момент времени от 0 до t_1 сигнал с блока управления открывает транзисторы Z1, Z4 и на первичную обмотку автотрансформатора подается напряжение V_1 .

Рис. 5. Напряжение $u_1(t)$ инвертора

В момент времени от t_1 до t_2 , напряжение на первичной обмотке автотрансформатора (клеммы I–4) u_1 меняет свой знак на противоположный, так как открываются транзисторы Z2, Z3, а транзисторы Z1, Z4 закрываются. Таким образом, постоянное напряжение 600 В преобразуется в переменное напряжение с частотой 5 к Γ ц на первичной обмотке автотрансформатора. График зависимости $u_1(t)$ (рис. 5).

Автотрансформатор состоит из первичной обмотки L1, вторичной обмотки L2, ферритового сердечника. Выводы вторичной обмотки автотрансформатора подключены к однофазному мостовому выпрямителю на диодах D1, D2, IGBT модулях Z5, Z6, который подключается кабелем электропитания к контактной сети. Блок управления осуществляет измерение напряжения на нагрузке, сравнивает с эталоном, и если напряжение в контактной сети выше нормы, то на транзисторы Z₅, Z₆ подается напряжение U_{39} меньше, чем в предыдущий момент времени. И наоборот, если в контактной сети напряжение ниже нормы, тогда блок управления подает большее напряжение U_{33} на транзисторы Z₅, Z₆. Таким образом осуществляется стабилизация напряжения.

2. ПЕРЕДАТОЧНАЯ ФУНКЦИЯ ИСПОЛНИТЕЛЬНОГО ОРГАНА СИСТЕМЫ СТАБИЛИЗАЦИИ ТЯГОВОГО НАПРЯЖЕНИЯ

Для вывода передаточной функции системы стабилизации тягового напряжения рассмотрим систему уравнений тягового двигателя.

Основные уравнения тягового двигателя (двигателя с сериесным возбуждением):

$$U = e + iR_p + L \, di/dt \,, \tag{1}$$

где U — напряжение тяговой сети, i — ток якоря, R — сопротивление якорной цепи, включающее в себя сопротивления:

- 1) обмотки возбуждения $w_{\rm B}$,
- 2) обмотки якорной цепи,

- 3) щеточных контактов,
- 4) регулировочного реостата R_p (рис. 6);
- e ЭДС обмотки якоря, определяемая по формуле:

$$e = c_e \Phi n. \tag{2}$$

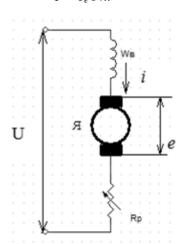


Рис. 6. Схема нагрузки тягового напряжения

В этой формуле c_e — обмоточный коэффициент, Φ — поток, создаваемый обмоткой возбуждения $w_{\rm B}$, n — число оборотов якоря [об./мин.].

Обмоточный коэффициент c_e равен

$$c_e = p N/a , \qquad (3)$$

где p — число пар полюсов двигателя, N — число проводников обмотки якоря, a — число параллельных ветвей обмотки якоря. Поток возбуждения Φ равен

$$\Phi = \tau l_{\mathsf{g}} B = l_{\mathsf{g}} i w_{l} \mu_{0} \tau / k_{\delta} k_{\mathsf{u}} \delta = k_{\mathsf{d}} i, \tag{4}$$

где τ — полюсное деление якоря, равное $\pi D/2p$ (D — диаметр якоря), $l_{\rm g}$ — осевая длина якоря, $\mu_0 = 4\pi 10^{-7}$ [H/м] — магнитная проницаемость вакуума, k_{δ} — зубцовый коэффициент, равный (1,3÷1,8), k_{μ} — коэффициент насыщения участков магнитопровода — полюса, статора и ротора (якоря) и зубцов, равный (2÷2,5), δ — длина зазора между якорем и полюсным наконечником; k_{Φ} — коэффициент пропорциональности потока

Ф и тока якоря i, определяемый формулой (4) — связь между числом оборотов n и вращающим моментом двигателя M определяется вторым законом Ньютона для вращательного движения:

$$M - M_c = I \frac{d\omega}{dt}, \qquad (5)$$

где M_c — момент сопротивления транспортного средства (трения, уклона пути), I — момент инерции якоря, равный

$$\omega = 2\pi n/60. \tag{6}$$

Вращающий момент двигателя M определяется по формуле

$$M = c_M \Phi i, \tag{7}$$

где

$$c_M = \frac{pN}{2\pi a} = c_e/2\pi.$$
 (8)

Индуктивность L складывается из индуктивности обмотки возбуждения $L_{\rm B}$ и индуктивности реакции якоря $L_{\rm R}$. Обе индуктивности определяются в результате расчета магнитной цепи двигателя [6].

Исключив из уравнений $(1)\div(8)$ промежуточные величины – M, E, n, получаем

$$L_{dt}^{\underline{di}} + iR + c_M 60 k_{\Phi} i\omega = U, \tag{9}$$

$$I_{\frac{d\omega}{dt}} - c_M k_{\phi} i^2 = M_c \quad . \tag{10}$$

Уравнения (9)÷(10) позволяют составить передаточную функцию тягового двигателя. Для этого по общепринятой методике заменим переменные величины U, i, ω на сумму начальных значений U0, i0, $\omega0$ и инфинитезимальных приращений dU, di, $d\omega$, обусловленных динамикой в управляемой системе обратной связи:

$$U=U_0 + dU;$$

$$i=i_0+di;$$

$$\omega=\omega_0 + d\omega;$$
(11)

и подставим в систему (9)÷(10). Получаем для приращений:

$$L\frac{d\delta\omega}{dt} + \delta iR + c_M 60k_{\phi}i_0\delta\omega + + c_M 60k_{\phi}\omega_0\delta i = \delta U,$$
 (12)

$$I\frac{d\delta\omega}{dt} - 2c_M k_{\phi} i_0 \delta i = 0. \tag{13}$$

Для того, чтобы объединить оба уравнения в одно, т. е. исключить $\delta\omega$, продифференцируем уравнение (12) по времени и подставим из уравнения (13) производную $\frac{d\delta\omega}{dt}$. После несложных преобразований получаем:

$$L\frac{d^{2}\delta i}{dt^{2}} + (R + c_{M}60k_{\phi}\omega_{0})\frac{d\delta i}{dt} + +2\delta i\frac{c_{M}^{2}60k_{\phi}^{2}i_{0}^{2}}{I} = \delta U.$$
(14)

Переходя к операторному изображению Лапласа, получаем:

$$[Lp^{2} + (R + c_{M} 60k_{\phi}\omega_{0})p + 2\frac{c_{m}^{2} 60k_{\phi}^{2} i_{0}^{2}}{I}]\delta i(p) = \delta U,$$
(15)

где $\delta i(p)$ – изображение δi .

Таким образом, передаточная функция тягового двигателя равна

$$W(p) = \frac{\delta U}{\delta i(p)} = \frac{k_{y}}{T_{1}^{2} + T_{2}p + 1},$$
 (16)

где k_y – коэффициент передачи, равный

$$k_{y} = \frac{I}{120c_{m}^{2}60k_{\Phi}^{2}i_{0}^{2}};$$
 (17)

 T_1 и T_2 – постоянные времени, равные

$$T_1 = \frac{\sqrt{LI/120}}{c_m^2 k_0^2 i_0^2},\tag{18}$$

$$T_2 = \frac{R + c_M 60 k_{\phi} \omega_0}{c_m^2 60 k_{\phi}^2 i_0^2}.$$
 (19)

3. ВЫБОР ЭЛЕМЕНТНОЙ БАЗЫ

Базовыми элементами при разработке системы были выбраны современные IGBTтранзисторы, или модули, характеристики которых позволяют работать с достаточно большими токами и напряжениями [2].

Сильноточные модули с электрической изоляцией, как правило, содержат ключи, соединенные по полумостовой ключевой схеме или с одноключевой конфигурацией. В этих модулях диапазон номинальных токов колеблется в пределах от 25 до 2500 ампер, а рабочее напряжение доходит до 3500 вольт.

Привлекательными чертами сильноточных модулей являются: наличие электрической изоляции, простота монтажа с охладителем и легкость связи с другими модулями для повышения нагрузки цепи. Они также позволяют избежать использования параллельного соединения ключей для токов, превышающих сотни ампер [5].

Использование приборов со встроенными обратными быстродействующими диодами становится особенно предпочтительным при разработке инверторов. В этом случае требуемое число силовых полупроводниковых компонентов уменьшается на 50% по сравнению с использованием IGBT и диодов в виде отдельных элементов. Перекрываемые области диапазонов токов, где использование дискретных приборов экономически предпочтительнее по сравнению с сильноточными модулями, могут быть расширены за счет параллельного соединения отдельных приборов [4].

4. МОДЕЛИРОВАНИЕ В СРЕДЕ ORCAD 9.2

Для моделирования работы системы стабилизации из программных пакетов выбрана OrCAD 9.2. Среда OrCAD 9.2 является универсальным средством сквозного проектирования электронных систем и обладает широкими возможностями.

На рис. 7 изображена модель системы стабилизации. В качестве ключей выбраны IGBT модули компании Mitsubishi Electric. Зависимость $U_1(t)$ инвертора (напряжение на выходе) изображена на рис. 5. Генераторами служат модели источников напряжения прямоугольных

импульсов Vpulse, выбранные из стандартных библиотек OrCAD. Модель трансформатора взята из библиотеки Analog, модель сердечни-ка – из библиотеки Magnetic. Модель IGBT модуля СМ600HA-12H тоже присутствует в стандартном наборе библиотек OrCAD.

Диаграммы, полученные в результате моделирования в среде OrCAD 9.2 и показывающие работу системы стабилизации показаны на рис. 8. Таким образом, выпрямитель, который работает в режиме широтно-импульсного модулятора, позволяет стабилизировать напряжение в контактной сети городского электротранспорта.

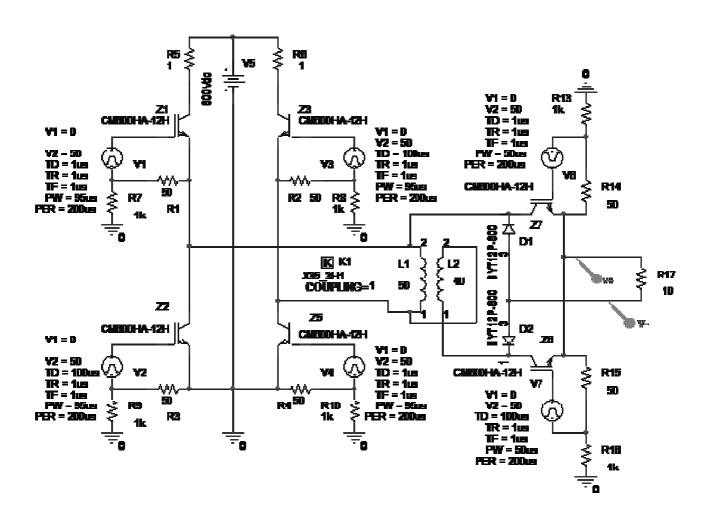
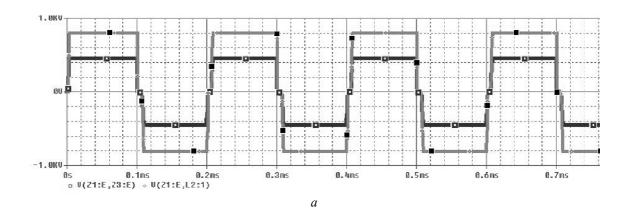
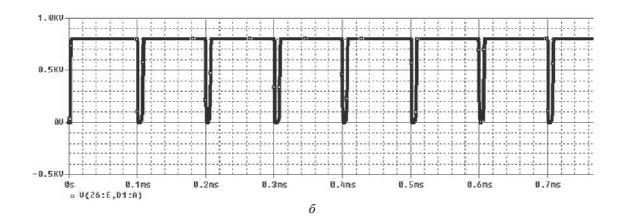




Рис. 7. Модель силовой части системы стабилизации

Рис. 8. Диаграммы напряжений при работе системы стабилизации: a – форма напряжения на входе и на выходе автотрансформатора; δ – форма напряжения на выходе выпрямителя при полностью открытых модулях Z5, Z6; ϵ – форма напряжения на выходе выпрямителя при открытых на 50% модулях Z5, Z6

СПИСОК ЛИТЕРАТУРЫ

- 1. Проектирование стабилизированных источников электропитания радиоэлектронной аппаратуры / Л. А. Краус [и др.]. М.: Энергия, 1980. 288 с.
- 2. **Шапиро С. В.** Резольвента Лагранжа и ее применение в электромеханике. Энергоатомиздат, 2008.
- 3. **Вдовин С. С.** Проектирование импульсных трансформаторов. Л.: Энергоатомиздат. Ленингр. отделение, 1991. 208 с.
- 4. Энциклопедия устройств на полевых транзисторах / В. П. Дьяконов [и др.]. М.: СОЛОН-Р, 2002. 512 с.
- 5. **Колпаков А.** MELCOSIM? IPOSIM? EMISEL? О выборе и замене модулей IGBT // Силовая электроника. 2005. № 1.
- 6. **Болотовский Ю. И., Таназлы Г. И.** OrCAD. Моделирование «Поваренная книга». М.: Солонпресс, 2005. 200 с.

ОБ АВТОРАХ

Шапиро Семен Валентинович, зав. каф. общей физики Уфимск. гор. академии экономики и сервиса. Д-р техн. наук, проф.

Муфтиев Салават Разитович, вед. инж.-энергетик троллейбусн. депо № 1 МУЭТ г. Уфы. Дипл. инж. по электрон. технике (УГАТУ, 1995). Иссл. в обл. разработки систем стабилизации напряжения тяговых подстанций городского электротранспорта.