Вестник УГАМУ

АВИАЦИОННАЯ И РАКЕТНО-КОСМИЧЕСКАЯ ТЕХНИКА

УДК 621.45

# А. Е. КИШАЛОВ, Д. Х. ШАРАФУТДИНОВ

# ОЦЕНКА СКОРОСТИ РАСПРОСТРАНЕНИЯ ПЛАМЕНИ С ПОМОЩЬЮ ЧИСЛЕННОГО ТЕРМОГАЗОДИНАМИЧЕСКОГО МОДЕЛИРОВАНИЯ

Проведены расчеты процесса горения в потоке в программном комплексе для трехмерного термогазодинамического моделирования ANSYS 11.0 CFX. Произведено сравнение величины скорости распространения пламени, полученной при моделировании горения, с экспериментальными данными при различных условиях и параметрах топливо-воздушной смеси. На основании сравнения показана возможность применения подобных программных комплексов для моделирования процессов горения, происходящих в авиационных двигателях. *Авиационные двигатели; горение; скорость распространения пламени; термогазодинамическое моделирование* 

## введение

Горение - наиболее сложный из всех процессов, происходящих в авиационных двигателях. Его сложность заключается не только в сложнейшем математическом описании процесса, но и в сложности его экспериментального исследования. На процесс горения влияет множество факторов, значительно усложняющих его описание и расчет. Кроме таких факторов, как начальные температура и давление, на процесс горения влияют состав топливовоздушной смеси (вид горючего и окислителя, их массовое соотношение, наличие посторонних примесей), интенсивность и степень турбулентности, процессы тепло- и массообмена и др. Все это значительно осложняет теоретическое описание и экспериментальные исследования [2]. Наилучшие результаты при расчетах процессов горения дают полуэмпирические теории, полученные в результате многочисленных экспериментов. В основном они применимы для определенного диапазона изменения параметров потока и ТВС [4].

На современном этапе развития компьютерных технологий появляется новая возможность в исследовании процессов горения, при помощи расчетов в программных комплексах для трехмерного термогазодинамического моделирования, например в ANSYS 11.0 CFX.

Задача данного исследования – определение возможности применения программного комплекса ANSYS 11.0 CFX для расчетов процесса

горения и оценка достоверности получаемого результата.

Для проверки работоспособности хорошо зарекомендовавшего себя для задач гидрогазодинамики ANSYS 11.0 CFX, были смоделированы процессы ламинарного и турбулентного горения в гомогенной, предварительно перемешанной TBC. Это позволяет исследовать только сам процесс горения, без отвлечения на процессы распыла топлива и подготовки TBC.

В качестве критерия, по которому оценивается точность расчета в ANSYS 11.0 CFX, была выбрана  $U_N$  – нормальная скорость распространения пламени, являющаяся наиболее важной физико-химической характеристикой процесса горения. Были проведены расчеты ламинарного и турбулентного горения паров керосина в потоке воздуха. Расчеты сверялись с экспериментальными данными, полученными на кафедре АДЭУ КГТУ им. А. Н. Туполева [3].

## 1. ЛАМИНАРНОЕ ГОРЕНИЕ

Для исследования возможностей программного комплекса ANSYS при расчете ламинарного горения было проведено моделирование процесса горения в горелке Бунзена [2]. Схема расчетной модели приведена на рис. 1.

На данной геометрической модели построена тетраэдрическая конечно-элементная сетка, состоящая из 1 000 000 элементов с призматическим пограничным слоем и с уменьшением размеров элемента в области горения. На вход модели подается ТВС (однородная смесь паров керосина и воздуха) со скоростью  $U_{\rm Bx}$ , температурой  $T_{\rm Bx}$  и коэффициентом избытка воздуха  $\alpha$  [3]. На выходе из модели – давление  $P_H$  = 101325 Па.

Контактная информация: (347) 273-79-54

Работа выполнена при финансовой поддержке РФФИ



Рис. 1. Схема расчетной модели

#### Таблица 1

Экспериментальные данные по ламинарному горению

|                           | $U_N$ , м/с |       |       |       |       |       |       |  |
|---------------------------|-------------|-------|-------|-------|-------|-------|-------|--|
|                           | α           |       |       |       |       |       |       |  |
| <i>Т</i> <sub>вх</sub> ,К | 0,600       | 0,750 | 0,900 | 1,050 | 1,225 | 1,420 | 1,625 |  |
| 473                       | 0,35        | 0,70  | 0,95  | 0,95  | 0,83  | 0,70  | 0,55  |  |
| 573                       | 0,50        | 1,05  | 1,35  | 1,38  | 1,25  | 1,08  | 0,83  |  |
| 673                       | 0,60        | 1,50  | 1,90  | 1,92  | 1,70  | 1,42  | 1,10  |  |
| 773                       | 0,80        | 1,80  | 2,65  | 2,69  | 2,45  | 2,00  | 1,58  |  |
| 873                       | 1,20        | 2,70  | 3,85  | 3,80  | 3,35  | 2,82  | 2,13  |  |

Таблица 2

Скорость распространения пламени, полученная в расчетах

|                    | U <sub>N</sub> , м/с |              |       |       |       |              |              |  |  |
|--------------------|----------------------|--------------|-------|-------|-------|--------------|--------------|--|--|
|                    | α                    |              |       |       |       |              |              |  |  |
| $T_{_{\rm BX}}$ ,К | 0,600                | 0,750        | 0,900 | 1,050 | 1,225 | 1,420        | 1,625        |  |  |
| 473                | горит внутри         | горит внутри | 0,899 | 0,899 | 0,849 | горит внутри | горит внутри |  |  |
| 573                | горит внутри         | 1,204        | 1,276 | 1,303 | 1,182 | 1,095        | горит внутри |  |  |
| 673                | горит внутри         | 1,632        | 1,771 | 1,753 | 1,603 | 1,512        | 1,242        |  |  |
| 773                | горит внутри         | 1,737        | 2,017 | 2,048 | 1,962 | 1,822        | 1,765        |  |  |
| 873                | горит внутри         | 2,456        | 2,929 | 2,948 | 2,828 | 2,602        | 2,346        |  |  |

## Таблица 3

| Относительная погрешность расчета |                                      |       |       |       |       |       |       |  |  |
|-----------------------------------|--------------------------------------|-------|-------|-------|-------|-------|-------|--|--|
|                                   | Относительная погрешность расчета, % |       |       |       |       |       |       |  |  |
|                                   | α                                    |       |       |       |       |       |       |  |  |
| $T_{_{ m BX}}$ ,K                 | 0,600                                | 0,750 | 0,900 | 1,050 | 1,225 | 1,420 | 1,625 |  |  |
| 473                               | -                                    | -     | 5,37  | 5,37  | 2,29  | -     | -     |  |  |
| 573                               | -                                    | 14,67 | 5,49  | 5,58  | 5,44  | 1,41  | -     |  |  |
| 673                               | -                                    | 8,80  | 6,79  | 8,69  | 5,71  | 6,46  | 12,94 |  |  |
| 773                               | -                                    | 3,49  | 23,89 | 23,86 | 19,90 | 8,88  | 11,72 |  |  |
| 873                               | _                                    | 9,04  | 23,92 | 22,43 | 15,58 | 7,72  | 10,15 |  |  |

Модель турбулентности  $k - \varepsilon$ , модель горения Finite Rate Chemistry and Eddy Dissipation, химическая реакция JetA Air WD1. В результате серии предварительных расчетов подобраны такие настройки модели горения, которые позволяют проводить подобные расчеты с достаточной точностью. Характеристики воздуха и керосина взяты из базы данных ANSYS 11.0 CFX. Стехиометрический коэффициент – 14,91. Для воспламенения TBC в начальный момент времени за срезом сопла установлена температура 1500 К. В процессе счета контролировалась температура на выходе из расчетной области. Расчет останавливался через 50 итераций после стабилизации значений температуры.

В табл. 1 приведены экспериментальные данные по ламинарному горению. Результаты серии проведенных расчетов приведены в табл. 2. В результате некоторых расчетов получено, что фронт пламени располагается до среза сопла, находится внутри трубы (что не соответствует экспериментам). Относительные погрешности расчетов по сравнению с экспериментальными данными приведены в табл. 3.

Результаты расчета с параметрами  $U_{\rm BX} = 1,567$  м/с, температурой  $T_{\rm BX} = 573$  К и коэффициентом избытка воздуха α = 1,05 приведены на рис. 2-7. Полученная в результате расчетов скорость распространения фронта пламени  $U_N = 1,303$  м/с (экспериментальное значение  $U_N = 1,38$  м/с, относительная погрешность 5,58%). Как видно на приведенных рисунках, зона горения образует конус за срезом форсунки. Зона горения достаточна тонкая, неровная, с «выбросами» пламени. По концентрации массовых долей продуктов сгорания также можно выделить зоны с локальными «богатыми» и «бедными» составами смеси. С физической точки зрения это обусловлено неравновесным характером процесса горения и наличием автотурбулизации пламени, что приводит к образованию локальных зон повышенной температуры и неравновесного состава смеси. В результате процесса тепло-массообмена при движегаза в канале флуктуации состава НИИ и температуры смеси нивелируются и на выходе устанавливается равновесное распределение по температуре и составу.











Рис. 4. Массовая доля керосина





На рис. 8 приведено сравнение экспериментальных и расчетных данных.



Как можно видеть, расчет дает хорошие результаты в диапазоне α от 0,8 до 1,4. Вне этого диапазона расчетная скорость распространения фронта пламени завышена (горение происходит до сопла). При этом характер расчетной кривой сохраняется правильным, соответствует экспериментальной. При расчетах с низкой начальной температурой (до  $T_{\rm BX} = 673$  K) точность расчетов вполне приемлемая для моделирования столь сложного процесса (около 10%), при расчетах с высокой начальной температурой (773 K и 873 K) погрешность расчетов возрастает (до 24%).

# 2. ТУРБУЛЕНТНОЕ ГОРЕНИЕ

Турбулентное горение – наиболее распространенный вид горения в авиационных двигателях. В авиационных двигателях, в узлах, где происходит горение (основная и форсажная камеры сгорания), скорость потока достигает сотен м/с, скорость распространения ламинарного пламени 1...2 м/с, турбулентного – иногда может достигать десятков метров в секунду. Для стабилизации горения в авиадвигателях применяют различные устройства, создающие зону обратных токов и одновременно увеличивающие турбулентность потока (например, Vобразные стабилизаторы).

Для исследования возможностей программного комплекса ANSYS при расчете турбулентного горения был смоделирован процесс горения в нишевом стабилизаторе. Схема расчетной модели приведена на рис. 9.

Расчетная модель представляет собой <sup>1</sup>/<sub>4</sub> часть всей модели. На данной геометрической модели построена тетраэдрическая конечноэлементная сетка, состоящая из 300 000 элементов с призматическим пограничным слоем и с уменьшением размеров элемента в области горения.



Рис. 9. Схема расчетной модели

На вход модели подается ТВС (однородная смесь паров керосина и воздуха) со скоростью  $U_{\text{вх}} = 50,7$  м/с, температурой  $T_{\text{вх}} = 373$  К и коэффициентом избытка воздуха  $\alpha$  по табл. 4. На выходе из модели – давление  $P_H = 101325$  Па. На внутренних гранях установлены условия симметрии. Модель турбулентности  $k - \varepsilon$ , модель горения Eddy Dissipation, химическая реакция JetA Air WD1. Параметры воздуха и керосина – взяты из базы данных ANSYS 11.0 CFX. Стехиометрический коэффициент был выбран равным 14,91. Для воспламенения ТВС в начальный момент времени в области нишевого стабилизатора установлена температура 1500 К.

В процессе счета контролировалась температура на выходе из расчетной области. Расчет останавливался через 50 итераций после стабилизации значений температуры.

Таблица 4

Экспериментальные данные по турбулентному горению

|                                | α    |      |      |      |      |      |  |  |
|--------------------------------|------|------|------|------|------|------|--|--|
|                                | 0,60 | 0,71 | 0,82 | 1,02 | 1,23 | 1,40 |  |  |
| <i>U</i> <sub>T</sub> ,<br>м/с | 6,50 | 7,45 | 7,70 | 7,10 | 5,70 | 4,65 |  |  |

Результаты серии проведенных расчетов и относительные погрешности расчетов по сравнению с экспериментальными данными приведены в табл. 5. Картины течения похожи по характеру с экспериментальными течениями в нишевых стабилизаторах [1].

Таблица 5

Результаты и относительная погрешность расчетов

|                                                                  | α     |       |       |       |       |       |  |  |
|------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|--|--|
|                                                                  | 0,60  | 0,71  | 0,82  | 1,02  | 1,23  | 1,40  |  |  |
| U <sub>т</sub> ,<br>м/с                                          | 7,465 | 7,888 | 8,135 | 7,479 | 6,413 | 5,505 |  |  |
| Отно-<br>ситель-<br>ная по-<br>греш-<br>ность<br>расче-<br>та, % | 14,84 | 5,87  | 5,65  | 5,34  | 12,51 | 18,38 |  |  |

Результаты расчета с коэффициентом избытка воздуха  $\alpha = 0,82$  приведены на рис. 10– 15. Полученная в результате расчетов скорость распространения фронта пламени  $U_T =$ = 8,135 м/с (экспериментальное значение  $U_T =$ = 7,70 м/с, относительная погрешность расчета 5,65%).

В зоне нишевого стабилизатора, в области с внезапным расширением присутствуют мощные вихревые зоны, которые создают возможность для стабилизации пламени (рис. 11). Зона горения – сужающаяся к выходу из расчетной области. Пламя из зоны обратных токов (которая постоянно поджигает свежую TBC) со скоростью  $U_T$  распространяется к центру потока (где остается несгоревшая TBC), но так как скорость потока выше скорости распространения пламени, зону горения «сносит» к выходу из расчетной области.







Рис. 11. Вектора скоростей







**Рис. 13.** Массовая доля O<sub>2</sub>



Рис. 14. Массовая доля СО<sub>2</sub>



**Рис. 15.** Массовая доля H<sub>2</sub>O

На рис. 16 приведено сравнение экспериментальных и расчетных данных.



#### выводы

Проведены расчеты по определению скорости распространения пламени при ламинарном и турбулентном горении. Получено, что погрешность при определении скорости распространения пламени при ламинарном горении в диапазоне  $\alpha$  от 0,8 до 1,4 при расчетах с начальной температурой до  $T_{\rm Bx} = 673$  К составляет менее 10%. Вне этого диапазона погрешность расчета увеличивается до 24%. Погрешность при определении скорости распространения пламени при турбулентном горении в том же диапазоне α составляет около 10%, вне этого диапазона – около 20%. На данном этапе исследования (в ходе данной работы) установлено, что программный комплекс ANSYS 11.0 CFX вполне применим для расчетов процессов горения. Данные расчеты могут быть проведены с большей точностью на более мелкой сетке, а также с использованием других моделей горения. Для применения данного программного продукта для расчетов процессов горения, происходящих в основной и форсажной камерах сгорания авиационных двигателей, необходимо провести дополнительные исследования на моделях более приближенных к процессам, происходящим в авиационных двигателях.

#### СПИСОК ЛИТЕРАТУРЫ

1. Альбом течений жидкости и газа. Составление и авторский текст М. Ван-Дайка. М.: Мир, 1986. 184 с.

2. Лефевр А. Процессы в камерах сгорания ГТД. М.: Мир, 1986. 566 с.

3. Мингазов Б. Г. Внутрикамерные процессы и автоматизированная доводка камер сгорания ГТД. Казань: Казанск. гос. техн. ун-т им. А. Н. Туполева, 2000. 167 с.

4. **Пчелкин Ю. М.** Камеры сгорания газотурбинных двигателей. М.: Машиностроение, 1973. 392 с.

# ОБ АВТОРАХ



Кишалов Александр Евгеньевич, асп. каф. авиац. двигателей. Дипл. инж.-мех. (УГАТУ, 2006). Инж.-констр. ФГУП НПП «Мотор». Иссл. в области автоматики форсажных камер сгорания авиационных ГТД.



Шарафутдинов Дамир Ханяфиевич, асп. каф. АДЭУ. Дипл. магистр (КГТУ им. А. Н. Туполева, Казань, 2006). Иссл. в обл. теории флуктационного реагирования в газах.