MATERIALS.

TECHNOLOGIES.

DESIGN

УДК 538.951 Р.А.С.S. 62.20.-х

DOI 10.54708/26587572_2022_42839

STRUCTURE TRANSFORMATION OF THE ZN-LI-MG ALLOY DURING HPT

Olga Borisovna Kulyasova^{1, 2a}, Ralina Il'shatovna Ishemgulova¹, Il'ya Andreevich Danilov¹

¹ Ufa State Aviation Technical University, K. Marx str. 12, Ufa, 450008, Russia

² Bashkir State University, Zaki Validi str. 32, Ufa, 450076, Russia

^a elokbox@mail.ru

ABSTRACT

This paper presents the results of a study of the effect of severe plastic deformation by torsion (HPT) on the transformation of the structure and mechanical properties of the bioresorbable zinc alloy Zn-0.8%Li-0.1%Mg. The strain rate during HPT, as well as the number of revolutions, were analyzed. A deformation regime is proposed that ensures the formation of a homogeneous structural-phase state. A mode has been established in which grain refinement by HPT leads to an increase in the strength characteristics of the Zn-0.8%Li-0.1%Mg alloy due to the formation of an ultrafine-grained structure (UFG). The UFG structure formed by HPT provides an increase in microhardness from 98 HV to 185 HV. The tensile strength of the samples after HPT at a strain rate of 10^{-3} s⁻¹ was 595 MPa, the elongation to failure was 47%, which is several times higher than the required parameters for medical applications.

KEYWORDS

Zinc alloy; ultrafine-grained structure; severe plastic deformation by torsion; strength.

ТРАНСФОРМАЦИЯ СТРУКТУРЫ В ПРОЦЕССЕ ИПДК ЦИНКОВОГО СПЛАВА СИСТЕМЫ ZN-LI-MG

Ольга Борисовна Кулясова^{1, 2а}, Ралина Ильшатовна Ишемгулова¹, Илья Андреевич Данилов¹

¹ Уфимский государственный авиационный технический университет, Россия, 450008, Уфа, ул. К. Маркса, 12

² Башкирский государственный университет, Россия, 450076, Уфа, ул. Заки Валиди, 32

^a elokbox@mail.ru

АННОТАЦИЯ

Представлены результаты исследования влияния интенсивной пластической деформации кручением (ИПДК) на трансформацию структуры и механических свойств биорастворимого цинкового сплава Zn-0,8%Li-0,1%Mg. Проанализирована скорость деформации при ИПДК, а также количество оборотов. Предложен режим деформации, обеспечивающий формирование однородного структурно-фазового состояния. Установлен режим, при котором измельчение зерна методом ИПДК приводит к повышению прочностных характеристик сплава Zn-0,8%Li-0,1%Mg за счет образования ультрамелкозерностой структуры (УМЗ). Сформи-

рованая методом ИПДК УМЗ структура обеспечивает увеличение микротвердости с 98 HV до 185 HV. Предел прочности образцов после обработки методом ИПДК при скорости деформации 10⁻³ с⁻¹ составил 595 МПа, относительное удлинение до разрушения 47%, что в несколько раз превышает требуемые параметры для медицинских применений.

КЛЮЧЕВЫЕ СЛОВА

Цинковый сплав; ультрамелкозернистая структура; интенсивная пластическая деформация кручением; прочность.

Введение

Прошло много времени с тех пор, как металлические биоматериалы приобрели клиническое применение [1]. Чаще всего для реконструкции твердых тканей используются титан и его сплавы, нержавеющие стали, а также кобальт-хромовые сплавы, которые характеризуются в основном такими превосходными свойствами как механические свойства, обрабатываемость и формуемость, высокая коррозионная стойкость, а также их экономическая доступность [2]. Все эти материалы оптимально использовать в тех случаях, когда у организма уже нет возможности к регенерации разрушенной ткани. В случаях травм детей, когда пациенты должны повторно оперироваться для предотвращения, разрушения растущей кости имплантат должен не мешать росту костей эти материалы не подходят для использования. К тому же модуль упругости большинства ортопедических имплантатов, изготовленных из этих материалов, больше, чем у натуральной кости, что приводит к явлению экранирования напряжения [3, 4]. Чтобы устранить такие проблемы, были разработаны новые материалы, называемые биорастворимыми материалами [5]. Это революционный биоматериал, который постепенно деградирует, при этом обеспечивая необходимую поддержку до полного выздоровления [6, 7]. Вторичная операция по удалению имплантата не требуется, что устраняет реабилитационный послеоперационный период пациента, дополнительные расходы и риск появления новых симптомов [8]. В процессе деградации происходит уменьшение механической поддержки костной ткани, что приводит к передаче нагрузок от ортопедического имплантата к кости, тем самым уменьшается риск снижения плотности кости [9]. Биорезорбируемые полимеры являются материалами-кандидатами в области тканевой инженерии [10, 11], тогда как биорезорбируемые металлические материалы представляют альтернативу для несущих нагрузок [5]. Наиболее известными биоразлагаемыми металлами являются железо (Fe) [12], магний (Mg) [13] и цинк (Zn) [14]. В настоящее время с термином биоразлагаемые металлические материалы ассоциируются сплавы на основе магния. Магний не токсичен, необходим в некоторых биологических процессах, модуль Юнга магния близок к модулю кортикальной кости человека, а также, согласно исследованиям, присутствие магния положительно влияет на рост костей [15, 16]. Несмотря на все вышеперечисленные преимущества, до сих пор не решена проблема высокой скорости коррозии магниевых сплавов в жидкостях организма. Чрезмерная скорость коррозии приводит к утере механической целостности имплантата еще до того, как кость восстановилась. В последние годы цинк и его сплавы привлекли к себе внимание как класс биорезорбируемых материалов, благодаря их биосовместимости и коррозионной стойкости [17–19]. Однако чистый Zn и промышленные цинковые сплавы обладают довольно низкими механическими свойствами, не обеспечивающими требования для применений в медицине. Улучшение механических свойств возможно с одной стороны за счет легирования цинка другими биосовместимыми химическими элементами, такими как Li, Mg, Ca, Sr и Cu [14]. Среди исследованных систем сплавов Zn-Li-Mg представляет интерес, потому что это одна из немногих систем, потенциально способных к старению. С другой стороны для достижения высоких значений важно сформировать ультрамелкозернистую структуру, например, методами интенсивной пластической деформации. Однако в литературе нет публикаций о микроструктуре и свойствах сплавов Zn-Li-Mg, обработанных методом КВД. Поэтому целью данной работы было выявить эволюцию структуры в процессе КВД и ее влияние на механические свойства сплава Zn-0,8%Li-0,1%Mg.

1. Материалы и методики исследования

Исходные литые образцы сплава Zn-0,8Li-0,1Mg были подвергнуты гомогенизационному отжигу при температуре 300 °C в течение 72 часов с охлаждением в воду. Термическая обработка образцов проводилась в муфельной печи Nabertherm.

Для получения наноструктурного состояния диски (диаметром 20 мм и толщиной 1 мм) подвергали ИПДК при комнатной температуре с приложенным давлением 6 ГПа. Для формирования структуры выполнялось 1, 2, 5 и 10 оборотов. Исследовали влияние скорости деформации, поэтому образцы при ИПДК деформировали при разных скоростях 0,2, 0,5 и 1 оборот/мин. Макроструктуру изучали на оптическом микроскопе Olympus GX51. Микроструктуру исследовали на растровом электронном микроскопе (РЭМ) JEM-6390 и просвечивающем электронном микроскопе (ПЭМ) JEM-2100 с ускоряющими напряжениями 10 кВ и 200 кВ соответственно.

Измерение микротвердости осуществляли методом Виккерса (Hv) на автоматическом микротвердомере EMCO–Test DuraScan с нагрузкой 50 г и временем выдержки 10 с. Испытания на растяжение проводили на испытательной машине Instron 5982 при комнатной температуре со скоростью деформации 10^{-3} с⁻¹. Размер рабочей части образцов составил $0,6 \times 1 \times 4$ мм³.

2. Результаты исследования и их обсуждение

Структура исходного сплава (рис. 1) содержит две области (светлую и темную); согласно [20], темная область соответствует первичной бета-фазе LiZn₄, а светлая область соответствует эвтектике Zn + β -LiZn₄. В темной области имеются крупные первичные дендриты β -LiZn₄ размером более 1 мкм. Частицы Zn также были обнаружены в первичной фазе β -LiZn₄, эти данные хорошо согласуются с работой [20].

Fig. 1. Microstructure Zn-0.8%Li-0.1% Mg after annealing at 300 °C, a - general form, $\delta - acicular Zn$ is deposited in the primary phase β -LiZn₄

Значение микротвердости исходного состояния составляло 129,6±3,9 HV, предел прочности при растяжении образцов в исходном состоянии был равен 190 МПа, относительное удлинение составило 3%.

Для достижения максимальной прочности в процессе ИПДК была проведена серия экспериментов, нацеленных на установление взаимосвязи скорость деформации – микротвердость (рис. 2, а). Проанализированы три скорости 0,2, 0,5 и 1 об/мин. Установлено, что микротвердость образцов, деформированных со скоростью 0,2 об/мин составила 193 HV, деформированных со скоростью 0,5 и 1 об/мин 191 и 187 HV соответственно. Как видно, разница в величине микротвердости не существенная, тем не менее образцы, деформированные со скоростью 1 об/мин показали наименьшую микротвердость изза возможного деформационного разогрева и активизации динамического возврата.

Также было проанализировано изменение величины микротвердости в зависимости от числа оборотов при скорости деформации 1 об/мин (рис. 2, б). Установлено, что с увеличением количества оборотов значение микротвердости увеличивается, что связано с увеличением плотности дефектов кристаллической структуры и границ деформационного происхождения.

Исследования образцов после ИПДК с различным количеством оборотов методом РЭМ позволили установить трансформацию микроструктуры сплава. На рис. 3, а хорошо видно, что после 1 оборота деформации неоднородность структуры сохраняется. Интенсивное измельчение со сформированными зернами порядка 1 мкм, наблюдается только в светлой фазе эвтектического происхождения (рис. 3, б). После деформации 5 оборотов (рис. 3, в) трансформация структуры с хорошо различимыми зернами происходит в обеих фазах. Наиболее однародная и проработанная структура была обнаружена в образцах после деформации ИПДК 10 оборотов (рис. 3, г).

Рис. 2. Зависимость микротвердости от скорости деформации (*a*). Количество оборотов было равно 1, зависимость микротвердости от количества оборотов (*б*). Скорость деформации 1 об/мин

Fig. 2. Dependence of microhardness on strain rate (*a*). The number of turns was 1, dependence of microhardness on the number of revolutions (δ). Deformation speed 1 rpm

Рис. 3. Микроструктура (РЭМ) сплава Zn-0,8%Li-0,1% Мд после ИПДК: *а*, *б* – *1 оборот; в* – *5 оборотов; г* – *10 оборотов*

Fig. 3. Microstructure (SEM) of the Zn-0.8% Li-0.1% Mg alloy after HPT: $a, \ 6-1 \ turn; \ 6-5 \ turns; \ 2-10 \ turns$

Исследования структуры образцов после деформации методом ИПДК 10 оборотов позволили установить, что в процессе деформации была сформирована УМЗ структура со средним размером зерна около 500 нм (рис. 4). Было замечено, что в теле зерен наблюдается низкая плотность дислокаций, что указывает на динамическую рекристаллизацию при деформации. Также в структуре были обнаружены глобулярные частицы, предположительно Zn₁₁Mg₂[21].

Рис. 4. Микроструктура сплава Zn-0,8%Li-0,1% Мд после ИПДК (10 оборотов)

Fig. 4. Microstructure of the Zn-0.8% Li-0.1% Mg alloy after HPT (10 turn)

Механические испытания на растяжение при комнатной температуре образцов после ИПДК 10 оборотов представлены на рис. 5. Предел прочности на растяжение образцов с УМЗ структурой составил 595 МПа, а относительное удлинение – 47%. Полученные значения механических характеристик в 2 раза выше, чем требуется для применения в качестве медицинских имплантатов.

Fig. 5. Tensile diagram of Zn-0.8%Li-0.1%Mg alloy subjected to HPT

Заключение

На основе проведенного исследования можно сделать вывод, что скорость дефор-

мации (при ИПДК) несущественно влияет на микротвердость сплава Zn-0,8%Li-0,1%Mg, однако использование высоких скоростей приводит к снижению значений микротвердости из-за деформационного разогрева и активизации динамического возврата. Установлено, что с увеличением количества оборотов значение микротвердости увеличивается, что связано с увеличением плотности дефектов кристаллической структуры и границ деформационного происхождения. Была проанализирована трансформация структуры в процессе ИПДК, установлено, что наиболее однородная структура формируется при ИПДК 10 оборотах. Установлено, что ультрамелкозернистая структура со средним размером зерна 500 нм, сформированная методом ИПДК (10 оборотов) обеспечила высокую прочность, а именно микротвердость составляла 185 HV, предел прочности 595 МПа, а пластичность 47%. Полученные значения механических характеристик в 2 раза выше, чем требуется для применения в качестве медицинских имплантатов.

Благодарности / Acknowledgments

Работа выполнена при поддержке РФФИ № 21-53-53021. Экспериментальная часть работы выполнена с использованием оборудования ЦКП «Нанотех» ФГБОУ ВО «УГАТУ». The work was supported by the Russian Science Foundation No. 21-53-53021. The experimental part was carried out with the use of the equipment of the "Nanotech" Core Facility Center of the FSBI HE "USATU".

СПИСОК ЛИТЕРАТУРЫ

1. Kargozar S., Ramakrishna S., Mozafari M. Chemistry of biomaterials: Future prospects // Curr. Opin. Biomed. Eng. 2019. V. 10. P. 181–190. DOI: 10.1016/j. cobme.2019.07.003.

2. Findik F. Recent developments of metallic implants for biomedical applications // Period. Eng. Nat. Sci. 2020. V. 8, No. 1. P. 33–57. DOI: 10.21533/PEN.V8I1.988. G487.

3. Metallic bone fixation implants: A novel design approach for reducing the stress shielding phenomenon / A.A.Al-Tamimi et al. // Virtual Phys. Prototyp. 2017. V. 12, Iss. 2. P. 141–151. DOI: 10.1080/17452759.2017.1307769.

4. Ti-5Al-5Mo-5V-3Cr bone implants with dualscale topography: A promising alternative to Ti-6Al-4V / C. Micheletti et al. // Nanotechnology. 2018. V. 31, Iss. 3. Article number 235101. DOI: 10.1088/1361-6528/ ab79ac.

5. Amukarimi S., Mozafari M. Biodegradable Magnesium Biomaterials – Road to the Clinic // Bioengineering. 2021. V. 9, Iss. 3. Article number 107. DOI: 10.3390/bioengineering9030107.

6. Biodegradable Materials for Bone Repairs: A Review / L. Tan et al. // J. Mater. Sci. Technol. 2013. V.29, Iss. 6. P. 503–513. DOI: 10.1016/j.jmst.2013.03.002.

7. Drelich J. W. Characterization of Biodegradable Medical Materials // Miner. Met. Mater. Soc. 2019. V. 71. P. 1404–1405. DOI: 10.1007/S11837-019-03381-3.

8. Parai R., Bandyopadhyay-Ghosh S. Engineered bio-nanocomposite magnesium scaffold for bone tissue regeneration // J. Mech. Behav. Biomed. Mater. 2019. V. 96. P. 45–52. DOI: 10.1016/j.jmbbm.2019.04.019.

9. Biodegradable Magnesium-Based alloys for bone repair applications: Prospects and challenges / B. Jahani et al. // Biomed. Sci. Instrum. 2020. V. 56. P. 292–304. DOI: 10.1155/2018/9216314.

10. Majerski K., Surowska B., Bienias J. The comparison of effects of hygrothermal conditioning on mechanical properties of fibremetal laminates and fibre reinforced polymers // Compos. Part B: Eng. 2018. V. 142. P. 108–116. DOI: 10.1016/j.compositesb.2018.01.002.

11. High Speed 3D printing of high-performance thermosetting polymers via two-Stage curing / X. Kuang et al. // Macromol. Rapid Commun. 2018. V. 39, Iss. 7. Article number 1700809. DOI: 10.1002/marc.201700809.

12. Iron-manganese: new class of metallic degradable biomaterials prepared by powder metallurgy / H. Hermawan et al. // Powder Metall. 2008. V. 51, Iss. 1. P. 38–45. DOI: 10.1179/174329008X284868.

13. Current status on clinical applications of magnesium-based orthopaedic implants: A review from clinical translational perspective / D. Zhao et al. // Biomaterials. 2017. V. 112. P. 287–302. DOI: 10.1016/j. biomaterials.2016.10.017.

14. Alloying design of biodegradable zinc as promising bone implants for load-bearing applications / H. Yang et al. // Nat. Commun. 2020. V. 11, Iss. 1. Article number 401. DOI: 10.1038/s41467-019-14153-7.

15. Guo Y. B., Salahshoor M. Biodegradable Orthopedic Magnesium Calcium Alloys, Processing, and Corrosion Performance // Materials. 2012. V. 5, Iss. 1. P. 135–155. DOI: 10.3390/ma5010135.

16. Magnesium and its alloys as orthopedic biomaterials: A review / M. P. Staiger et al. // Biomaterials. 2006. V. 27, Iss. 9. P. 1728–1734. DOI: 10.1016/j. biomaterials.2005.10.003.

17. In vitro and in vivo studies of Zn-Mn biodegradable metals designed for orthopedic applications / B. Jia et al. // Acta Biomaterialia. 2020. V. 108. P. 358–372. DOI: 10.1016/j.actbio.2020.03.009.

18. Challenges in the use of zinc and its alloys as biodegradable metals: Perspective from biomechanical compatibility / G. Li et al. // Acta Biomaterialia. 2019. V. 97. P. 23–45. DOI: 10.1016/j.actbio.2019.07.038.

19. Bowen P. K., Drelich J., Goldman J. Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents // Adv Mater. 2013. V. 25, Iss. 18. P. 2577–2582. DOI: 10.1002/adma.201300226.

20. Li Zh., Shi Zh., Liu X. High-performance hotwarm rolled Zn-0.8Li alloy with nano-sized metastable precipitates and sub-micron grains for biodegradable stents // J. Mater. Sci. Technol. 2019. V. 35, Iss. 11. P. 2618–2624. DOI: 10.1016/j.jmst.2019.06.009.

21. Huang He, Liu H., Wang L. Revealing the effect of minor Ca and Sr additions on microstructure evolution and mechanical properties of Zn-0.6 Mg alloy during multi-pass equal channel angular pressing // J. Alloys Compds. 2020. V. 844. Article number 155923. DOI: 10.1016/j.jallcom.2020.155923.