

TECHNOLOGIES.

DESIGN

УДК 621.7, 62-48, 669.715:539.25 P.A.C.S. 72.80.Tm

DOI 10.54708/26587572_2024_621726

FORMATION OF A SUPERPLASTIC NANOSTRUCTURED ALUMINUM MATRIX FOR A METAL MATRIX COMPOSITE REINFORCED WITH CONTINUOUS FIBERS

Elena Vladimirovna Bobruk^a, Matvey Evgenievich Klimov, Vladimir Vasilievich Astanin

Ufa University of Science and Technology, 32 Zaki Validi St., 450076, Ufa, Russia ^a e-bobruk@yandex.ru

ABSTRACT

The work examines the microstructure of the 1565ch alloy of the Al-Mg system after combined treatment, including annealing at a temperature of 480 °C, severe plastic deformation by highpressure torsion at room temperature and subsequent isothermal rolling at a temperature of 200 °C. The formation of a nanostructured state in the 1565ch alloy with a regulated distribution of the Al₃Mg₂, Al₆Mn and Al₃Zr phases both in the body and at the boundaries of aluminum grains made it possible to realize the effect of high-strain-rate superplasticity at a temperature of 300 °C at a rate of 10^{-2} s⁻¹, the strain-rate sensitivity parameter was m = 0.7. Based on the results of mechanical tests, the creation of a metal-matrix composite reinforced with continuous boron fibers under conditions of superplastic pressing at a temperature of 350 °C was simulated in order to determine the technological parameters for the production of a metal-matrix composite. The simulation results show that the equivalent stresses in the fiber acquire a maximum value when compressed by 50%, but in this case the all-round compression pattern prevails, which does not lead to fiber destruction. Using the 1565ch alloy in a nanostructured state, the features of obtaining a multilayer metal-matrix composite using the "foil – fiber – foil" scheme by isothermal pressing in the low-temperature superplasticity mode were studied.

KEYWORDS

Nanostructure; aluminum alloy; metal matrix composite; continuous fiber.

ФОРМИРОВАНИЕ СВЕРХПЛАСТИЧНОЙ НАНОСТРУКТУРНОЙ АЛЮМИНИЕВОЙ МАТРИЦЫ ДЛЯ МЕТАЛЛОМАТРИЧНОГО КОМПОЗИТА, АРМИРОВАННОГО НЕПРЕРЫВНЫМИ ВОЛОКНАМИ

Елена Владимировна Бобрук^а, Матвей Евгеньевич Климов, Владимир Васильевич Астанин

Уфимский университет науки и технологий, ул. Заки Валиди, 32, 450076, Уфа, Россия ^а e-bobruk@yandex.ru

АННОТАЦИЯ

В работе рассмотрена микроструктура сплава 1565ч системы Al-Mg после комбинированной обработки, включающей отжиг при температуре 480 °C, интенсивную пластическую деформацию методом кручением под высоким давлением при комнатной температуре и последующую изотермическую прокатку при температуре 200 °C. Формирование в сплаве 1565ч наноструктурного состояния с регламентированным распределением Al₂Mg₂, Al₂Mn и Al₂Zr фаз как в теле, так и по границам алюминиевых зерен позволило реализовать эффект высокоскоростной сверхпластичности при температуре 300 °С при скорости 10⁻² с⁻¹, параметр скоростной чувствительности составил m = 0,7. По результатам механических испытаний смоделировано создание металломатричного композита, армированного непрерывными волокнами бора в условиях сверхпластичного прессования при температуре 300 °C с целью определения технологических параметров изготовления металломатричного композита. Результаты моделирования показывают, что эквивалентные напряжения в волокне приобретают максимальное значение при прессовании на 50%, но в этом случае преобладает схема всестороннего сжатия, не приводящая к разрушению волокна. С применением сплава 1565ч в наноструктурном состоянии исследованы особенности получения многослойноного металломатричного композита по схеме «фольга – волокно – фольга» изотермическим прессованием в режиме низкотемпературной сверхпластичности.

КЛЮЧЕВЫЕ СЛОВА

Наноструктура; алюминиевый сплав; металломатричный композит; непрерывное волокно.

Введение

В настоящее время для разработки новых технологий в авиационной промышленности активно проводятся работы по созданию конструкционных материалов, сочетающих малую плотность и высокие прочностные характеристики при повышенных рабочих температурах. Одним из направлений в авиационной промышленности является применение в конструкциях перспективной техники металломатричных композиционных материалов на основе жаропрочных титановых сплавов, армированных непрерывными волокнами карбида кремния, которые в настоящее время находят широкое применение [1]. Композиционные материалы с металлической матрицей обладают существенным преимуществом перед композитами на полимерной основе благодаря высокой электро- и теплопроводности, стойкости к жестким излучениям, более широкому температурному диапазону эксплуатации и высокому сопротивлению на сжатие вдоль волокон [2–9].

Одним из наиболее перспективных методов получения композитов, упрочненных волокнами бора или карбида кремния диаметром 140 мкм, признано горячее изостатическое прессование в режиме сверхпластичности матричного материала. В качестве матричного материала возможно использование фольги из алюминиевых сплавов. Уникальная способность сверхпластичных материалов легко заполнять тонкие зазоры между волокнами позволяет существенно снизить температурно-силовые параметры компактирования композитов и тем самым улучшить их качество [2–9].

В процессе твердофазного изостатического компактирования металломатричных композитов осуществляется несколько физико-химических процессов: заполнение матричным материалом пространства между волокнами, деформационная сварка слоев матричного материала между собой и диффузионное соединение матричного материала с упрочняющими волокнами с образовани-

ем продуктов реакции [10–15]. Последнее необходимо для обеспечения прочной связи волокон с матрицей, но способно приводить к деградации волокон из-за возникновения концентраторов напряжения на их поверхности [14, 16, 17]. Другим фактором потери прочности композитов может служить механическое разрушение волокон из-за чрезмерно высоких и неоднородно распределенных давлений при компактировании. Развитие перечисленных процессов зависит от температуры, давления и времени компактирования. Применение эффекта сверхпластичности матричного материала значительное улучшает условия получения композита.

Новые возможности для технологии металломатричного композита открываются с применением в качестве полуфабрикатов матриц фольг в ультрамелкозернистом и наноструктурном состоянии. Такие материалы обладают сверхпластичностью при пониженных температурах, что позволяет снизить или полностью устранить термическую деградацию волокон и одновременно повысить эксплуатационные свойства матрицы. Получение подобных структур чаще всего осуществляется интенсивной пластической деформацией [18, 19].

Недавние работы показали, что в алюминиевых сплавах в наноструктурном (НС) и ультрамелкозернистом (УМЗ) состояниях формируется специфическое распределение легирующих элементов в виде ультрадисперсной вторичной упрочняющей фазы, а также сегрегаций либо прослоек вдоль границ зерен, что приводит к уникальному комплексу свойств, например, одновременно повышается прочность и пластичность материала [20, 21]. Обнаруженные особенности механического поведения сплавов со специальными структурами могут открыть новые возможности для создания перспективных технологий получения композиционных материалов с минимальной деградацией упрочняющих волокон и повышенными свойствами композитов системы АІ-В.

Целью настоящего исследования являлись анализ и разработка режимов получения полуфабриката матрицы в наноструктурном состоянии алюминиевого сплава системы Al-Mg для изготовления композитного материала при пониженных температурах за счет реализации низкотемпературной СП.

1. Материал и методы исследования

Для решения поставленных задач в качестве материала исследования был выбран деформируемый термически неупрочняемый сплав 1565ч (Al-5,66Mg-0,81Mn-0,67Zn-0,09Zr (мас.%)). Структура сплава в исходном холоднокатаном состоянии представлена волокнами, средняя ширина волокон составляет 2,3±0,2 мкм [22, 23].

Для достижения наиболее эффективного измельчения зерна при интенсивной пластической деформации за счет твердорастворного упрочнения и наклепа исходные слитки перед деформацией отжигали при температуре 480±5 °C в течение 1 часа, а затем закаляли в воду.

Для формирования наноструктурного состояния образцы в виде диска сплава 1565ч диаметром 20 мм и толщиной 1,4 мм подвергалась кручению под высоким давлением (КВД) при комнатной температуре (КТ) с приложенным удельным давлением 6 ГПа и деформацией, скорость 1 об/мин. Общее число оборотов вращающейся наковальни равно 10. Для получения полуфабриката в виде фольги полученные образцы прокатывали до толщины 0,2 мм при температуре 200±10 °C со скоростью деформации 0,3 м/мин на 6-валковом прокатном стапроизводства НАМКООК M-TECH не INDUSTRIES CO.LTD, оснащенном системой нагрева рабочих валков собственной конструкции. Скорость деформирования составила 0,4 с⁻¹. Суммарная степень обжатия 98%: 30 проходов вдоль образца со степенью деформации при каждом проходе не более 10%. Выбор способа и режима прокатки продиктован требованием сохранения наноструктурного состояния, преимущественно с высокоугловыми границами зерен.

Анализ микроструктуры методом просвечивающей электронной микроскопии осуществляли на электронном микроскопе фирмы JEOL JEM-2100 при ускоряющем напряжении 200 кВ с катодом LaB₆. В качестве объектов исследования выступали тонкие фольги, прозрачные для пучка электронов. Дли приготовления фольг вырезали пластинки размерами 5×3×0,6 мм. После производили механическое утонение пластинок на абразивной бумаге до толщины 0,10-0,15 мм. Объекты для исследований тонкой структуры изготавливались методом струйной полировки тонких фольг на установке Tenupol-5 в растворе 20% HNO₃ и 80% метанола при температуре -25 °С и напряжении 15-20 В.

Качественный анализ композита алюминий-бор проводили с использованием металлографического микроскопа CarlZeissAxio Observer.A1m и сканирующего электронного микроскопа JEOL JSM-6490LV, оснащенного приставкой INCA для химического анализа методом энергодисперсионной рентгеновской спектроскопии (EDX).

Испытания на растяжение наноструктурного сплава после изотермической прокатки проводили при температуре 300 °C с кратковременным переключением скоростей деформирования: увеличивая скорость в 2 раза и возвращая ее на исходную позицию после стабилизации течения. Механические испытания проводились на универсальной испытательной машине INSTRON 5982 с программным обеспечением Bluehill 3 в диапазоне скоростей деформации 10⁻² –10⁻³ с⁻¹ для определения напряжения течения, относительного удлинения до разрушения, параметра скоростной чувствительности $(m = \Delta \ln \sigma / \Delta \ln \dot{\epsilon}, \sigma$ – течение напряжений; $\dot{\epsilon}$ – скорость деформации).

Моделирование процесса твердофазного прессования проводилось с использованием программного комплекса «Деформ» (Лицензия ПК СФТС. Ключ №9190/Уфа, Россия. Модель 5×5 мм, сетка 0,02 мм с продвижением передней кромки (автоматическое расщепление в зоне деформации)). Температуру принимали 300 °С согласно ранним исследованиям [23]. Скорость перемещения – 0,004 мм/сек., коэффициент трения – 0,35 [23]. Используется инструмент без теплопередачи.

Изготовление композита «алюминиевая матрица – борное волокно» проводилось на универсальной испытательной машине INSTRON 5982 с программным обеспечением Bluehill 3 в вакуумном контейнере при температуре 350 °C со скоростью деформации 5×10⁻³ с⁻¹.

2. Результаты исследований

Для получения полуфабриката в виде фольги алюминиевый сплав 1565ч системы Al-Mg подвергался комбинированной обработке. В процессе комбинированной обработки, состоящей из отжига при температуре 480 °C, интенсивной пластической деформации кручением под высоким давлением при КТ и последующей прокатки при 200 °C, исходная крупнозернистая структур сплава 1565ч трансформировалась в однородную наноразмерную структуру (рис. 1).

С помощью электронной просвечивающей микроскопии установили, что в результате комбинированной обработки сплава 1565ч была получена однородная микроструктура с равноосными зернами размером 280 \pm 15 нм и высокоугловыми границами (рис. 1). Внутри и по границам зерен наблюдаются множественные выделения фаз Al₆Mn и Al₃Zr. Также в структуре отмечено образование частиц β-фазы Al₃Mg₂ в результате динамического распада пересыщенного твердого раствора.

Рис. 1. Микроструктура сплава 1565ч после комбинированной обработки: *а – светлое поле с электронограммой; б – темное поле*

В недавней работе [22, 23] показано, что алюминиевый сплав 1565ч в НС состоянии проявляет признаки сверхпластичности уже при температурах 250–300 °С [22, 23]. Максимальные удлинения 300% в НС сплаве 1565ч после обработки КВД при КТ были достигнуты при температуре 250 °С и скорости деформации $\dot{\varepsilon} = 5 \times 10^{-3}$ с⁻¹, коэффициент скоростной чувствительности m = 0,35 [22, 23]. Максимальные напряжения составили 63 МПа. Максимальные удлинения при температуре испытаний 300 °С и скорости деформации $\dot{\varepsilon} = 5 \times 10^{-3}$ с⁻¹ НС сплава 1565ч достигли значений 500%. Максимальные напряжения составили 26 МПа [22, 23].

Поэтому механические испытания HC сплава после комбинированной обработки, включающей отжиг при температуре 480 °C, кручение под высоким давлением при KT и последующую прокатку при 200 °C, проводили при температуре 300 °C с кратковременным переключением скоростей деформирования: увеличивая скорость в 2 раза и возвращая ее на исходную позицию после стабилизации течения.

Сверхпластическое поведение обнаружено и в состоянии сплава после термомеханической обработки. Образец после изотермической прокатки не только сохранил характерные признаки сверхпластичности HC сплава 1565ч, удлинения составили более 400%, но проявил их при более высоких скоростях деформации $\dot{\varepsilon} = 10^{-2}$ с⁻¹ и при тех же значениях напряжениях течения (26 МПа) (рис. 2). При этом коэффициент скоростной чувствительности составил m = 0,7. Эти результаты можно отнести к типичному сверхпластическому поведению.

На рис. 2 представлена зависимость истинного напряжения течения от степени деформации при температуре 300 °С. Такие диаграммы отражают динамику структурных изменений в материале и полезны в качестве исходных данных для моделирования изотермического прессования композита.

По результатам механических испытаний на растяжение в ходе 3D моделирования методами конечных элементов было исследовано напряженно-деформированное состояние композита с наноструктурной алюминиевой матрицей в процессе прессования при температуре 300 °С. Для математического описания течения матричного материала в межволоконное пространство в силу симметрии заготовки композитного материала матрицу разбивали на ячейки – сетка 0,02 мм с продвижением переднего фронта (автоматическое дробление в зоне деформации). Среда

Fig. 1. Microstructure of the 1565ch alloy after combined treatment: a – *bright field with electron diffraction pattern;* δ – *dark field*

принята нелинейно вязкой. Согласно более ранним работам, для достижения высокой прочности композитного материала, 35% объема которого должны составлять борные волокна [1, 5, 6]. В связи с этим расстояние между волокнами было установлено 20 мкм при диаметре борного волокна 140 мкм. Так как длина волокон значительно превышает их сечение и величину шага укладки, в работе рассматривалась деформация матричного материала как двумерная. В процессе моделирования уплотнения металломатричного композита в СП режиме скорость деформации поддерживалась в оптимальном интервале (порядка 10⁻² с⁻¹). Для узлов, находящихся в контакте с волокном, учитывали силы

трения, пропорциональные нормальному давлению, коэффициент трения (Al) принят 0,35 [23].

В задачи прессования композита, кроме заполнения пустого пространства, входит создание прочной металлической связи матричных слоев в промежутках между волокнами, а также формирование ультрадисперсных продуктов реакции на границе матрица-волокно, обеспечивающих необходимую связь компонентов композита. В решении этих задач важную роль играет плотная оксидная пленка, присутствующая на поверхности таких металлов, как алюминий, которую необходимо разрушить пластической деформацией.

Рис. 2. Зависимость истинного напряжения течения от степени деформации при температуре 300 °C наноструктурного сплава 1565ч после комбинированной обработки

Fig. 2. Dependence of the true flow stress on strain at a temperature of 300 °C of the nanostructured alloy 1565ch after combined treatment

Моделирование показало, что наиболее интенсивная деформация (до 1,25) происходит у границы с волокном (рис. 3). Это предопределяет реакцию образующихся участков ювенильной поверхности металла с волокном. В точке встречи потоков матрицы в пространстве между волокнами степень деформации на поверхности порядка 0,45, что недостаточно для образования нужных разрывов оксидной пленки, но после первичного контакта интенсивность деформации в этой области возрастает до 0,98, что должно обеспечить образование металлической связи.

Возможно, что для анализа реакций на соединяемых поверхностях важна не столько накопленная степень деформации, сколь-

ко локальная скорость деформации в области набегания одной поверхности на другую (рис. 4). Скорость деформации в этой узкой области более чем на порядок превышает заданную скорость. Здесь разрушается оксидная пленка и происходит первичное схватывание поверхностей, чему способствует вынос на поверхность избыточной энергии в виде деформационных дефектов и локального повышения температуры (рис. 5). Активная область обегает контур волокна и переходит в точку соприкосновения встречных потоков материала матрицы. В этой зоне формируются зародыши боридов алюминия, ответственные за прочность межкомпонентной связи и деградацию волокон, что неоднократно обсуждалось в публикациях [12–14].

Рис. 3. Эффективная пластическая деформация на разных этапах прессования композита с НС матрицей при температуре 300 °C

Fig. 3. Effective plastic deformation at different stages of pressing of composite with NS matrix at a temperature of 300 °C

Рис. 4. Эффективная скорость пластической деформации на разных этапах прессования композита с HC матрицей при 300 °C (стадии перемещения зоны активной деформации)

Fig. 4. Effective rate of plastic deformation at different stages of pressing of composite with NS matrix at 300 °C (stage of movement of the active deformation zone)

Рис. 5. Результаты моделирования на разных этапах прессования композита с НС матрицей при температуре 300 °C: градиенты температур по оси Z в зоне активной деформации

Fig. 5. Simulation results at different stages of pressing of composite with NS matrix at a temperature of 300 °C: temperature gradients along the Z axis in the active deformation zone

Еще одна проблема получения композитов состоит в вероятности механического разрушения волокон на стадии прессования. Большинство высокопрочных в продольном направлении волокон оказываются уязвимыми со стороны поперечных нагрузок. Результаты моделирования показывают, что эквивалентные напряжения в волокне приобретают максимальное значение на стадии 50% осадки, но в этом случае преобладает схема всестороннего сжатия, не угрожающая разрушением волокнам (рис. 6). Наиболее опасная стадия – начало осадки, но здесь напряжения ограничены благоприятными СП свойствами материала. На конечных стадиях прессования эквивалентные напряжения в волокнах снижаются.

 Рис. 6. Эквивалентные напряжения в борном волокне на разных стадиях прессования композита с НС матрицей

 Fig. 6. Equivalent stresses in boron fiber at different stages of pressing of composite with NS matrix

Моделирование процесса прессования с матрицей из сплава 1565ч в крупнозернистом состоянии представлено на рис. 7. В случае деформации с КЗ алюминиевой матрицей материал наиболее сильно течет в центральной части образца. На конечной стадии деформации наблюдается граница раздела между отдельными слоями – качественного соединения не произошло (рис. 7). Значения эквивалентных напряжений и эффективной пластической деформации значительно выше даже при температуре 500 °С.

Моделирование позволило установить ряд практических параметров уплотнения металломатричного композита. В процессе моделирования были оценены эквивалентные напряжения, накопленная пластическая деформация и контактное давление. Учтены реологические характеристики матричного сплава с учетом различных стадий уплотнения композиционного материала. Это дает возможность оценить напряженно-деформированное состояние матрицы в любой момент времени изготовления композиционного материала.

По результатам моделирования был изготовлен пилотный образец металломатричного композита с наноструктурной и крупнозернистой (КЗ) матрицами.

В случае деформации с КЗ матрицей наиболее сильно алюминиевый сплав течет в центральной части образца. Изготовленный композит с использованием КЗ матрицы по всему объему имеет однородную структуру (размер зерен составляет порядка 30–40 мкм). Между отдельными слоями четко прослеживается граница раздела, также наблюдаются трещины в борном волокне (рис. 8, *a*).

Рис. 7. Эквивалентные напряжения в борном волокне на конечной стадии прессования (*a*); эффективная пластическая деформация на конечной стадии прессования (б) композита с КЗ матрицей при 500 °C

Fig. 7. Equivalent stresses in boron fiber at the final stage of pressing (*a*); effective plastic deformation at the final stage of pressing (δ) of a composite with a CG matrix at 500 °C

Рис. 8. Микроструктура металломатричного композита: *a* – *c K3 матрицей (прессование при 500 °C), б* – *c HC матрицей (прессование при 300 °C)*

Fig. 8. Microstructure of metal matrix composite: a - with CG matrix pressed at 500 °C, $\delta - with NS$ matrix pressed at 300 °C

Изготовленный композит с использованием эффекта СП при пониженных температурах с НС матрицей по всему объему имеет однородную структуру (размер зерен не превышает 1 мкм). Граница раздела между отдельными слоями металлографически не выявляется, пространство между волокнами заполнено матричным материалом, что подтверждает качественную сварку (рис. 8, δ). В случае прессования с НС матрицей в условиях СП течение локализуется в непосредственной близости от волокон, что обеспечивает выравнивание течения материала, затекание происходит за счет уширения выступа матрицы.

Выводы

1. Сформировано наноструктурное состояние с размером зерен 280±15 нм в полуфабрикате в виде фольги из сплава 1565ч за счет комбинированной обработки, включающей в себя: закалка с температуры 480 °С, интенсивная пластическая деформация кручением под высоким давлением при КТ, изотермическая прокатка при 200 °С.

2. В наноструктурном сплаве 1565ч, полученном в результате обработки кручением под высоким давлением и последующей изотермической прокатки, установлен эффект высокоскоростной низкотемпературной сверхпластичности при температуре 300 °С при скорости 10^{-2} с⁻¹, параметр скоростной чувствительности составил m = 0,7.

3. Моделирование прессования металломатричного композита с НС алюминиевой матрицей показало, что наиболее сильные деформации (не более 1,25) возникают на границе раздела с волокном, что обеспечивает образование металлической связи.

4. Результаты моделирования прессования металломатричного композита с HC алюминиевой матрицей показывают, что эквивалентные напряжения в волокне приобретают максимальное значение при прессовании на 50%, но в этом случае преобладает схема всестороннего сжатия, не приводящая к разрушению волокна.

5. Опытные образцы борсодержащего композита с НС алюминиевой матрицей изготовлены в условиях низкотемпературной СП с высококачественной твердофазной сваркой.

Благодарности / Acknowledgments

Исследование выполнено за счет гранта Российского научного фонда № 24-19-00819, https://rscf.ru/project/24-19-00819/. Все исследования были выполнены в центре коллективного пользования «Нанотех» Уфимского университета науки и технологий.

The study was supported by the Russian Science Foundation grant No. 24-19-00819, https://rscf.ru/project/24-19-00819/. All studies were carried out at the "Nanotech" Shared Use Center of Ufa University of Science and Technology.

СПИСОК ЛИТЕРАТУРЫ

1. Rahman, K.M., Vorontsov, V.A., Flitcroft ,S.M., Dye, D. A high strength Ti–SiC metal matrix composite. Adv. Eng. Mater. 2017. 19 (7), 1700027. http://dx.doi. org/10.1002/adem.201700027.

2. Bansa, S.A., Khanna, V., Gupta, P. Metal Matrix Composites: Properties and Applications (Vol.2), 1st ed. Boca Raton Florida, 2022. https://doi. org/10.1201/9781003194910 (Eds.).

3. Pietrak, K., Wisniewski, T. S. A review of models for effective thermal conductivity of composite materials. J. Power Technol. 2015. 95(1). 14–24.

4. Brillon, A., Garcia, J., Riallant, F., Garnier, C., Joulain, A. Characterization of Al/B_4C composite materials fabricated by powder metallurgy process technique for nuclear applications. J. Nucl. Mater. 2022. 565. 153724. https://doi.org/10.1016/j.jnucmat.2022.153724.

5. Huang, Y., Ouyang, Q., Zhang, D., Zhu, J., Li, R., Yu, H. Carbon materials reinforced aluminum composites: a review. Acta Metall. Sin. (Engl. Lett.). 2014. 27 (5). 775–786. https://doi.org/10.1007/s40195-014-0160-1.

6. Khanna, V., Kumar, V., Bansal, S.A. Aluminiumcarbon fibre metal matrix composites: A Review. IOP Conf. Ser. Mater. Sci. Eng. 2021. 1033. 012057. https:// doi:10.1088/1757-899X/1033/1/012057.

7. Galyshev, S., Orlov, V., Atanov, B., Kolyvanov, E., Averichev, O., Akopdzhanyan, T. The Effect of tin content on the strength of a carbon fiber/Al-Sn-matrix composite wire. Metals. 2021. 11 (12). 2057. https://doi.org/10.3390/ met11122057.

8. Soliman, M.S., Rayes, M.M., Abba, A.T., Pimenov, D.Yu., Erdakov, I. N., Junaedi, H. Effect of tensile strain rate on high-temperature deformation and fracture of rolled Al-15vol% B_4C composite. Mater. Sci. Eng.A. 2019. 749. 129-136. https://doi.org/10.1016/j. msea.2019.02.016/

9. Zhao, S., Zhang, H., Cui, Z., Chen, D., Chen, Z. Superplastic behavior of an in-situ TiB_2 particle reinforced aluminum matrix composite processed by elliptical cross-section torsion extrusion. Mater. Charact. 2021. 178. 111243. https://doi.org/10.1016/j.matcha.

10. Zhang, Q., Ju, X., Liu, J., Wang, L., Li, Y., Wang, H., Chen, Zh. Superplasticity of Al-Zn-Mg-Cu composite containing uniform TiB₂ nanoparticles. Mater. Charact. 2021. 182. 111531. https://doi.org/10.1016/j. matchar.2021.111531.

11. Rawal, S.P. Metal-matrix composites for space applications. JOM. 2001. 53. 14–17. https://doi. org/10.1007/s11837-001-0139-z.

12. Seetharaman, S., Subramanian, J., Singh, R.A., Wong, W.L.E., Nai, M.L.S., Gupta, M. Mechanical properties of sustainable metal matrix composites: a review on the role of green reinforcements and processing methods. Technologies. 2022. 10, 32. https://doi. org/10.3390/technologies10010032.

13. Zweben, C.H. Composites: Overview. Encyclopedia of Condensed Matter Physics. (2005) 192-208. https://doi.org/10.1016/B0-12-369401-9/00545-3.

14. Astanin, V.V., Imaeva, L.A. Two stages of interfacial reaction in B-Al composite. J. Mater. Sci. 1994. 29. 3351–3357. https://doi.org/10.1007/bf00356684.

15. Mabuchi, M., Koike, J., Iwasaki, H., Higahi, K., Langdon, T. Processing and development of superplastic metal matrix composites. Materials Science Forum. 1994. 170-172. 503-512. https://doi.org/10.4028/www.scientific.net/MSF.170-172.503.

16. Astanin, V.V., Imayeva, L.A. The effect of the matrix superplastic deformation on interface reaction in fiber-reinforced composites, Scripta Metall. Mater. 1995. 32(9). 1495-1500. https://doi.org/10.1016/0956-716X(95)00194-Z.

17. Astanin, V.V., Padmanabhan, K.A., Bhattacharya, S.S. A model for grain boundary sliding and its relevance to optimal stuctural superplasticity: III. The effects of flow localization and specimen thickness on superplasticity in alloy SUPRAL 100. Mat. Sci. Technol. 1996. 12(7). 545-550.

18. Langdon, T.G. Overview: Using severe plastic deformation in the processing of superplastic materials. Mater. Trans. 2023. 64. 1299-1305. https://doi. org/10.2320/matertrans.MT-MF2022021

19. X. Wang, Q. Li, R. Wu, X. Zhang, L. Ma, 2018. A review on superplastic formation behavior of Al alloys. Adv. Mater. Sci. Eng. 2018, 7606140. https://doi: 10.1155/2018/7606140.

20. Astanin, V. V., Bobruk, E. V., Ramazanov, I. A., Abramova, M. M., Zaripov, N. G., Enikeev, N. A. High strain-rate superplasticity of ultrafine-grained Al-Mg-Mn-Zn-Zr alloy. Letters on Materials. 2023. 13 (4s). 408-413. https://doi.org/10.22226/2410-3535-2023-4-408-413

21. Zha, M., Zhang, H., Jia, H., Gao, Y., Jin, Sh. Sha, G., Bjørge, R., Mathiesen, R.H., Roven, H.J., Wang, H., Li, Y. Prominent role of multi-scale microstructural heterogeneities on superplastic deformation of a high solid solution Al–7Mg alloy. International Journal of Plasticity. 2021. 146. 103108. https://doi.org/10.1016/j. ijplas.2021.103108.

22. Mikhaylovskaya, A.V., Kishchik, M.S., Kotov, A.D., Tabachkova, N.Yu. Grain refinement during isothermal multidirectional forging due to β-phase

heterogenization in Al-Mg-based alloys. Materials Letters. 2022. 321, 132412. https://doi.org/10.1016/j. matlet.2022.132412.

23. Bobruk, E.V., Astanin, V. V., Ramazanov, I. A., Zaripov, N.G., Kazykhanov, V.U., Enikeev, N. A. Al-Mg-Mn-Zn-Zr alloy with refined grain structure to develop Al-B fiber-reinforced metal matrix composites compacted in superplastic conditions. Materials Today Communications. 2023. https://doi.org/10.1016/j. mtcomm.2023.107527.

E. Рамазанов, 24. Бобрук, В., И. А., Астанин, В. В., Зарипов, Н. Г., Казыханов, В. У., Дриц, А. М., Мурашкин, М. Ю., Еникеев, Н. А. Проявление сверхпластичности при пониженных системы температурах сплава 1565ч Al-Mg ультрамелкозернистом наноструктурном В И состояниях. Физика металлов и металловедение. 2023. T. 124 Nº 8. 771-782. https://doi.org/10.31857/ S0015323023600880.