MATERIALS.

TECHNOLOGIES.

DESIGN

УДК 620.173.251.2 P.A.C.S. 81.40.Gh

DOI 10.54708/26587572_2024_621774

EFFECT OF THE DEFORMATION AND THERMAL TREATMENT PARAMETERS ON THE MECHANICAL PROPERTIES OF THE VT20 TITANIUM ALLOY

Liliya Ilgizovna Zaynullina ^{1a}, Danil Olegovich Stukalin ¹, Yuecheng Dong ², Igor Vasilyevich Alexandrov ¹

¹ Ufa University of Science and Technology, 32 Zaki Validi St., 450076, Ufa, Russia

² Nanjing Tech University, 30 South Puzhu Road, 211816 Nanjing, Jiangsu Province, P.R. China

^a ZaynullinaLI@yandex.ru

ABSTRACT

In this work, the true stress-true strain curves were constructed for the VT20 titanium alloy at deformation temperatures from 750 °C to 980 °C and strain rates of 0.001–1 s⁻¹. The data were obtained by hot compression using the Gleeble-3800 equipment. During deformation at a rate of $\varepsilon = 0.1 \text{ s}^{-1}$, the process of dynamic recrystallization is observed. With an increase in temperature to 950 °C, the number of α -phases that have undergone recrystallization gradually increases and reaches the highest value. During the hot compression of the titanium alloy, a dependence of deformation resistance on the strain rate and deformation temperature is also observed. A decrease in deformation resistance occurs as the strain rate decreases and the temperature increases. Therefore, a conclusion was made that it is advisable to carry out high-temperature deformation of the titanium alloy in the range of temperatures of 875–980 °C and deformation rates of 0.01–0.10 s⁻¹.

KEYWORDS

VT20; pseudo-α titanium alloys; recrystallization; hot compression tests.

ВЛИЯНИЕ ПАРАМЕТРОВ ДЕФОРМАЦИОННО-ТЕРМИЧЕСКОЙ ОБРАБОТКИ НА МЕХАНИЧЕСКИЕ СВОЙСТВА ТИТАНОВОГО СПЛАВА ВТ20

Лилия Ильгизовна Зайнуллина ¹а, Данил Олегович Стукалин ¹, Юечэн Дун ², Игорь Васильевич Александров ¹

¹ Уфимский университет науки и технологий, ул. Заки Валиди, 32, 450076, Уфа, Россия

² Нанкинский технологический университет, Южная дорога Пучжу, 30, 211816 Нанкин, провинция Цзянсу, КНР

^a ZaynullinaLI@yandex.ru

АННОТАЦИЯ

В данной работе были построены кривые «истинное напряжение–истинная деформация» для титанового сплава ВТ20 при температурах деформации от 750 °C до 980 °C и скоростях 0,001–1 с⁻¹. Данные получены путем проведения горячей осадки с использованием установки Gleeble-3800. При деформировании со скоростью $\varepsilon = 0,1 c^{-1}$ наблюдается процесс динами-

74 2024. T. 6, № 2(17)

ческой рекристаллизации. С повышением температуры до 950 °С число α-фаз, прошедших рекристаллизацию, постепенно растет и достигает наибольшего значения. Во время горячей осадки титанового сплава наблюдается также зависимость устойчивости к деформации от скорости и температуры деформирования. Понижение устойчивости к деформации происходит по мере снижения скорости деформации и повышения температуры. Поэтому сделан вывод о том, что целесообразно проводить высокотемпературную деформацию титанового сплава в диапазоне температур 875–980 °С и скоростей деформации в пределах 0,01–0,10 с⁻¹.

КЛЮЧЕВЫЕ СЛОВА

ВТ20; псевдо-α титановые сплавы; рекристаллизация; осадка.

Введение

Как известно, в качестве основного легирующего элемента для жаропрочного титанового сплава BT20 используют алюминий, также данный сплав относят к псевдо-α классу [1, 2]. Обладая рядом достоинств, таких как высокие рабочие температуры, удельная прочность, низкая плотность, высокая коррозионная стойкость и свариваемость, применяется титановый сплав широко в промышленности, изделиях авиационной техники [3]. Сплав ВТ20 используется при производстве стеновых панелей, дистанционных рам, тонких перемычек, дисков компрессоров и различных других конструкций, которые испытывают сложные нагрузки [4]. В зависимости от фазового состава сплавы подразделяются на три группы: α , β и $\alpha + \beta$. Существование двух разных кристаллических структур сплава приводит к разнообразию свойств. В зависимости от условий обработки можно получить различные размеры структурных элементов [5]. Стоит отметить, что титановый сплав ВТ20 чувствителен к температуре и скорости деформации в процессе формовки [6, 7]. Поскольку условия производства сложно контролировать и всегда существуют некоторые различия в произ-

Таблица 1. Химический состав сплава ВТ20

Table 1. Chemical composition of the VT20 titanium alloy

водственном процессе, это может привести к некоторым различиям исходной структуры и механических свойств. В связи с этим в данной работе проводится исследование напряжения течения и микроструктуры при деформации материала в условиях высоких температур.

1. Методика исследований

В качестве экспериментального сплава был выбран титановый сплав ВТ20. В табл. 1 приведены основные химические элементы, входящие в состав сплава.

Подготовленные цилиндрические образцы длиной 8 мм и диаметром поперечного сечения 12 мм были нагреты до температуры проведения испытания и выдержаны 3 минуты. В установке Gleeble-3800 была проведена горячая осадка цилиндров и получены истинные диаграммы сжатия образцов. Температура деформации составляла 750, 800, 850, 900, 950, 980 °C, при этом степень деформации составляла 50%; скорость деформации также была различной: 0,001, 0,01, 0,1, 1 с⁻¹. После проведения испытаний образцы подвергались закалке в воду. Исследования микроструктуры проводили на оптическом микроскопе Olympus QX 51.

Элементы / Elements	Ti	Al	V	Мо	Zr	Fe	Si	С	N
Bec.% / Wt.%	87	6,8	2,2	1,7	2,0	0,07	<0,04	0,01	0,001

2. Результаты и их обсуждение

Микроструктура сплава в исходном состоянии характеризуется наличием светлой α - и темной матричной β - фазы на снимках, сделанных на оптическом микроскопе. Объемная доля α -фазы составила 56% (рис. 1), количество β -фазы равно 9% для равновесного состояния сплава BT20. Размер структурных элементов составляет 12±3 мкм.

На рис. 2 представлены истинные диаграммы сжатия титанового сплава ВТ20, деформация происходила при температурах 750, 800, 850, 900, 950, 980 °C.

По мере увеличения скорости деформации и постоянной температуре постепенно растет предел прочности. Это может быть связано с тем, что динамическая рекристаллизация α-фазы значительно затрудняется за счет большой скорости деформации, происходит увеличение сопротивления деформации сжатого образца.

В интервале температур от 750 °C до 900 °C по мере уменьшения скорости деформации, на графике видно, что значение напряжения становится практически неизменным после прохождения максимума. Это связано с тем, что при постоянной температуре уменьшение скорости деформации приводит к большему времени деформирования, позволяющему α-фазе претерпевать существенную динамическую рекристаллизацию. Рекристаллизованная α -фаза заменяет исходные участки с большой плотностью дислокаций, при этом величина напряжения на кривой становится более стабильной на поздних стадиях горячей осадки (рис. 2, *a*-*c*).

В диапазоне температур от 950 °C до 980 °C и скорости деформирования от 0,001 до 0,1 с⁻¹ по мере уменьшения скорости деформации на графике наблюдается большая стабилизация значения напряжения после достижения максимального значения, чем в случаях, рассмотренных выше. Это происходит из-за того, что у α -фазы есть больше времени на динамическую рекристаллизацию при такой скорости деформации (рис. 2, ∂ –e).

При скорости деформации $\varepsilon = 1 \text{ c}^{-1}$ и температуре T = 950 °C напряжение на кривой остается стабильным после достижения своего максимального значения главным образом потому, что размягчающий эффект α -фазы в это время эквивалентен эффекту упрочнения от обработки.

При скорости деформации $\varepsilon = 1 \text{ c}^{-1}$ и температуре T = 980 °C напряжение на кривой немного увеличивается после достижения своего наибольшего значения из-за того, что эффект динамического возврата меньше эффекта упрочнения при обработке, поэтому истинное напряжение демонстрирует тенденцию к росту после достижения своего пика.

Рис. 1. Микроструктура сплава ВТ20 в состоянии поставки **Fig. 1.** Microstructure of the VT20 alloy in the initial state

Рис. 2. Истинные диаграммы сжатия ВТ20, деформированного при различных температурах

Fig. 2. True stress-strain compression test diagrams of the VT20 alloy deformed at different temperatures

При постоянной скорости деформирования постепенное снижение предела прочности связано с повышением температуры деформации сплава ВТ20. Это объясняется тем, что рост температуры деформации позволяет более фрагментированной и деформированной α-фазе достичь условий для зарождения динамической рекристаллизации. Следовательно, снижение предела прочности ВТ20 при горячей деформации происходит из-за того, что при высоких температурах α-фаза подвергается более полной динамической рекристаллизации.

При скорости деформирования от 0,001 до 0,100 с⁻¹ увеличение температуры деформации приводит к стабилизации значений

напряжения на кривой после достижения максимального значения (рис. 3, *a*-*в*). Это объясняется тем, что с ростом температуры деформирования облегчается динамическая рекристаллизация α-фазы, осуществляемая полноценнее при высоких температурах.

При скорости деформации $\dot{\varepsilon} = 1 \text{ c}^{-1}$ и диапазоне температур от 750 до 950 °C по мере увеличения температуры величины напряжений на кривой имеют тенденцию к стабилизации после достижения своего пикового значения (рис. 3, *г*). Причем при скорости деформации $\dot{\varepsilon} = 1 \text{ c}^{-1}$ и температуре T = 980 °C по мере увеличения деформации напряжение на графике сначала несколько снижается после достижения своего пика,

а затем показывает незначительное повышение. Это происходит из-за того, что эффект размягчения α-фазы из-за динамической рекристаллизации в это время меньше, чем эффект упрочнения от обработки, в результате чего напряжение снова возрастает после падения.

На рис. 4 приведена эволюция микроструктуры сплава после проведения горячей деформации.

Рис. 3. Истинные диаграммы сжатия BT20, деформированного при разных скоростях **Fig. 3.** True stress-strain compression test diagrams of the VT20 alloy deformed at different strain rates

Рис. 4. Микроструктура сплава BT20 при разных температурах деформации со скоростью деформирования 0,1 с⁻¹ **Fig. 4.** Microstructure of the VT20 alloy at different deformation temperatures with a strain rate of 0,1 s⁻¹

При температуре деформации, равной 800 °C, малая часть фрагментированной α-фазы достигает энергии активации динамической рекристаллизации. При достижении температуры 850 °C возрастает количество α-фазы, в которой осуществляется процесс динамической рекристаллизации. Это происходит из-за того, что повышение температуры позволяет большему объему α-фазы достичь условий, необходимых для протекания рекристаллизации.

При температуре T = 900 °C гораздо больший объем α -фазы претерпевает динамическую рекристаллизацию, тогда же некоторая ее часть начинает сфероидизироваться для формирования равноосных зерен. Это происходит из-за того, что дальнейшее повышение температуры обеспечивает достаточное количество энергии для образования частиц α -фазы, их роста и сфероидизации.

При температуре деформации $T = 950 \,^{\circ}C$ ярче, чем при других условиях, выражен процесс динамической рекристаллизации, в результате которого образуется большое количество новых мелких частиц α -фазы. Это происходит благодаря тому, что при температуре $T = 950 \,^{\circ}C$ увеличивается частота зарождения частиц новой α -фазы, образующихся преимущественно на границах первоначальных зерен α -фазы.

Выводы

1) Во время горячей деформации титанового сплава ВТ20 наблюдается зависимость устойчивости к деформации от скорости и температуры деформирования. Понижение устойчивости к деформации происходит за счет снижения скорости деформации и повышения температуры.

2) По результатам исследований были выявлены рекомендуемые режимы высокотемпературной деформации для жаропрочного титанового сплава ВТ20: диапазон температур деформации 875–980 °С и скорость деформации в пределах 0,01–0,10 с⁻¹. 3) Когда при деформировании со скоростью $\varepsilon = 0,1$ с⁻¹ степень деформации титанового сплава ВТ20 достигает значения $\varepsilon = 0,7$, число α -фаз, прошедших процесс динамической рекристаллизации, постепенно растет с повышением температуры и достигает наибольшего значения при температуре T = 950 °C.

Благодарности / Acknowledgments

Исследование выполнено за счет гранта Российского научного фонда № 23-43-00041, https://rscf.ru/project/23-43-00041/.

The research was carried out with the financial support of the Russian Science Foundation under project No. 23-43-00041, https://rscf.ru/project/23-43-00041/.

СПИСОК ЛИТЕРАТУРЫ

1. State Standard 19807-91. Titanium and titanium alloys, wrought. Brands. Specifications: introduced for the first time: date of introduction 1992-07-01. Moscow: Interstate Standard, 1992.P.6. (In Russian) [ГОСТ 19807-91. Титан и сплавы титановые деформируемые. Марки. Технические условия: введ. впервые: дата введения 1992-07-01. М.: Межгосударственный стандарт, 1992. 6 с.].

2. Ilyin A.A., Kolachev B.A., Polkin I.S. Titanium alloys. Composition, structure, properties. Directory. M.: VILS. MATI, 2009. Р. 520. (In Russian) [Ильин А.А., Колачёв Б.А., Полькин И.С. Титановые сплавы. Состав, структура, свойства. Справочник. М.: ВИЛС. МАТИ, 2009. 520 с.].

3. Liu Z.Q., Di B. Welding of Dissimilar Materials. Beijing: Science Press, 2005.

4. Li Y. Welding and Application of Dissimilar Welding Materials. Beijing: Chemical Industry Press, 2003.

5. Ozerov M., Sokolovsky V., Galtsev A., Stepanov N., Zherebtsov S. Microstructural characteristics and recrystallization mechanism of Ti-6.5Al–2Zr–1Mo–1V alloy during two-stage hot deformation. // Materials Research Proceedings, 32, 280-286 (2023). DOI:10.21741/9781644902615-32.

6. Mironova, E.V. Selection of the optimal mode of heat treatment of titanium alloy VT20 using quantitative metallography and analysis of the chemical composition of phases. // Scientific and technical statements of SPbSPU, 4-1, 226-230 (2013).

(In Russian) [Миронова, Е.В. Выбор оптимального режима термообработки титанового сплава ВТ20 с применением количественной металлографии и анализа химического состава фаз. // Научно-технические ведомости СПбГПУ, 4-1, 226-230 (2013).].

7. Ozaki H., Hayashi S., Kutsuna M. Laser roll welding of dissimilar metal joint of titanium to aluminium alloy. // Weld. Int., 23, 501–509 (2009). DOI:10.1080/09507110802543005.