УДК 519.248

ИССЛЕДОВАНИЕ ЭФФЕКТИВНОСТИ ПЫЛЕЗАЩИТНОГО УСТРОЙСТВА ДВИГАТЕЛЯ ВЕРТОЛЕТА

А. А. САЛИМЗЯНОВА¹, Р. Р. ИСЛАМОВ², А. Х. РАХИМОВ³, А. С. ГИШВАРОВ⁴

¹nikaxa@inbox.ru, ² islamovrustem@bk.ru, ³mr.abdusattor@list.ru, ⁴kafedra.ad@mail.ru

ФГБОУ ВО «Уфимский государственный авиационный технический университет» (УГАТУ)

Аннотация. Исследуется влияние геометрических параметров пылезащитного устройства (ПЗУ) вертолетного двигателя на его эффективность: (степень очистки воздуха, потеря давления и масса ПЗУ). В качестве оптимизируемых параметров ПЗУ рассматриваются: радиус наружной части канала входного устройства ПЗУ и длина ПЗУ. Значения параметров эффективности определяются моделированием двухфазного потока «воздух – частицы пыли» с применением программного комплекса (ПК) ANSYS CFX.

Ключевые слова: пылезащитное устройство (ПЗУ); эффективность; геометрические параметры; параметры ПЗУ; пылевая среда; двигатель вертолета; оптимизация.

введение

При взлете и посадке вертолет поднимает большое количество пыли с земли, которая попадает в двигатель, проходит по газовому тракту и вызывает абразивный износ внутренних элементов, особенно роторов компрессора. Это значительно снижает производительность двигателя и приводит к преждевременному снятию с вертолета

Пылевая эрозия элементов проточной части ГТД и отложения пыли вызывают такие отказы, как снижение мощности, недопустимый рост температуры газа перед турбиной, поломки ослабленных эрозией лопаток, помпаж. Вследствие больших относительных скоростей воздуха, поступающего на лопатки, и больших окружных скоростей, столкновение их даже с мелкими твердыми частицами может приводить к значительному износу.

Интенсивность эрозии зависит главным образом от твердости и химического состава частиц пыли, в меньшей степени зависит от фракционного состава этих частиц (известно что частицы размером до 20 мкм не вызывают значительной эрозии).

Попавшие в двигатель частицы пыли не только изменяют форму профилей лопаток,

но и оседают во входной части компрессора, что затрудняет надежную работу двигателя вертолета (рис. 1 и 2). В результате налипания пыли на лопатках компрессора их собственная частота колебаний может уменьшиться на 45 %, что приводит к недопустимому увеличению действующих в лопатках напряжений и к их обрыву. ПЗУ не всегда полностью очищают воздух. Мультициклонные устройства могут очистить его до 98 %, но они громоздки. Моноциклонные или многоканальные ПЗУ очищают воздух до 75...80 %. При этом, естественно, на работу этих устройств затрачивается часть мощности двигателя.

В данной работе проводилось исследование эффективности λ-образного ПЗУ, принципиальная схема которого приведена на рис. 1 [1].

В процессе исследования эффективность рассматриваемого ПЗУ оценивалась тремя параметрами [2]: степенью очистки воздуха (η , %), потерей давления в ПЗУ (ΔP , мм.вод.ст.) и массой ПЗУ (М, кг). Значения η , ΔP и М определялись моделированием двухфазного потока «воздух-песок» с применением программного комплекса (ПК) *ANSYS CFX*.

Рис. 1. Схема ПЗУ λ-образного типа

В качестве варьируемых рассматривались геометрические параметры ПЗУ в области определения:

• радиус наружной части канала входного устройства ПЗУ 480 ≤ *R*_{нар} ≤ 640 мм;

длина ПЗУ 640 ≤ L ≤ 1120 мм.

Зависимости вида $\eta = f_1(L, R_{\text{нар}}), \Delta P = f_2(L, R_{\text{нар}}), M = f_3(L, R_{\text{нар}})$ определялись методом регрессионного анализа. Исходные данные для построения регрессионных моделей определялись расчетом значений η , ΔP и M для ПЗУ различной геометрии.

В качестве независимых факторов рассматривались:

 $-x_1$ (соответствует радиусу наружной части канала ПЗУ $R_{\text{нар}}$, мм);

- *х*₂ (соответствует длине ПЗУ L, мм).

Выходными (зависимыми) параметрами являлись:

 $-y_1$ (соответствует параметру η , %);

 $-y_2$ (соответствует параметру ΔP , мм.вод.ст.);

- уз (соответствует параметру М, кг).

Нормированные значения параметров *R*_{нар}, и *L* соответствовали области, заданной ограничениями вида:

 $-1 \le x_1 \le 1; \ -1 \le x_2 \le 1.$

В процессе исследования рассматривались уравнения регрессии вида:

$$\eta = a_0 + a_1 x_1 \dots + a_4 x_4 + a_{12} x_1 x_2 + + a_{34} x_3 x_4 + a_{11} x_1^2 + \dots a_{44} x_4^2;$$
(1)

$$\Delta P = e_0 + e_1 x_1 \dots + e_4 x_4 + e_{12} x_1 x_2 + e_{34} x_3 x_4 + e_{11} x_1^2 + \dots + e_{44} x_4^2; \quad (2)$$

$$V = c_0 + c_1 x_1 \dots + c_4 x_4 + c_{12} x_1 x_2 + + c_{34} x_3 x_4 + c_{11} x_1^2 + \dots + c_{44} x_4^2;$$
(3)

где *a_{ij}*, *в_{ij}* и *c_{ij}* – коэффициенты уравнений регрессии, определенные по данным табл. 1.

После исключения незначимых факторов по критерию Стьюдента, уравнение регрессии (1) приняло вид:

$$\eta = 89,28-2,615x_2+3,633x_1^2+2,765x_1x_2;(4)$$

(погрешность оценки η равна 1,21 %).

Аналогично были уточнены значения коэффициентов уравнений регрессии (2) и (3):

$$\Delta P = 123,9 - 150,84x_1 - 25,61x_2 - 74,45x_1^2; \quad (5)$$

(погрешность оценки ΔP равна 1,43 %);

$$M = 2,8+1,454x_1+0,341x_1^2$$
 (6)

(погрешность оценки М равна 0,5 %).

В натуральных единицах измерения была получена система уравнений, описывающая связь выходных параметров ПЗУ (η , ΔP и M) с его геометрией ($R_{\text{нар.}}$ и L):

$$\begin{cases} \eta = 89, 28 + 2, 615x_2 + 3, 633x_1^2 + 2, 765x_1x_2; \\ \Delta P = 123, 9 - 150, 84x_1 - 25, 6x_2 - 74, 451x_1^2; \\ M = 2, 8 + 1, 454x_1 + 0, 341x_1^2. \end{cases}$$

Таблица	1
---------	---

№	x_1	<i>x</i> ₂	<i>Y</i> 1	<i>Y</i> 2	Уз
	<i>R</i> _{нар.} , мм	<i>L</i> , мм	η, %	ΔP , мм.вод.ст.	М, кг
1	-1,0	1	91,28	308,2	9,8
2	-0,5	1	89,81	252,4	10,6
3	0	1	96,66	200,2	11,5
4	0,5	1	92,10	233,7	12,3
5	1,0	1	89,07	394,2	13,2
6	-1,0	0,25	85,52	228,8	11,6
7	-0,5	0,25	94,90	205,5	12,6
8	0	0,25	88,27	343,6	13,7
9	0,5	0,25	93,89	319,7	14,8
10	1,0	0,25	89,97	187,6	15,9
11	-1,0	0	85,48	151,4	13,6
12	-0,5	0	87,63	144,9	14,9
13	0	0	86,06	128,1	16,2
14	0,5	0	83,17	122,6	17,6
15	1,0	0	93,59	135,8	18,9
16	-1,0	0,25	84,56	111,7	15,8
17	-0,5	0,25	92,37	105,6	16,9
18	0	0,25	95,23	101,3	19,0
19	0,5	0,25	98,02	65,8	20,6
20	1,0	0,25	93,21	59,4	22,3
21	-1,0	1	87,47	84,2	18,3
22	-0,5	1	90,86	75,1	20,2
23	0	1	95,20	62,7	22,1
24	0,5	1	95,77	59,4	24,0
25	1,0	1	97,47	28,0	25,9

Система уравнений (7) использовалась для выбора оптимальных значений.

Оптимальные значения параметров эффективности ПЗУ следующие:

 $\eta_{opt} = 97 \%;$

 $\Delta P_{opt} = 59,4$ мм.вод.ст.;

M_{opt} =22,3 кг (см. рис. 2).

выводы

1. Применение ПО Ansys CFX позволяет удовлетворительно моделировать течение двухфазного потока «воздух–частицы пыли» в ПЗУ и количественно определять параметры, характеризующие его эффективность (степень очистки (η), потеря давления (ΔP) и массу (M)).

2. Регрессионные модели, описывающие зависимость основных показателей эффективности ПЗУ от его геометрических размеров, являются основной для выбора оптимальных значений геометрических размеров ПЗУ.

СПИСОК ЛИТЕРАТУРЫ

1. Степанов Г. Ю., Зицер И. М. Инерционные воздухоочистители. М.: Машиностроение, 1986. 184 с. [G.Y. Stepanov, I. M. Zicer, *The inertial air cleaner*, (in Russian). Moscow: Mashinostroenie, 1986].

2. Гишваров А. С., Аитов Р. Р., Айтумбетов А. М. Исследование эффективности пылезащитных устройств вертолетных газотурбинных двигателей // Вестник УГАТУ, 2015. т. 19, № 2 (68). С. 100 – 110. [А. S. Gishvarov, R. R. Aitov, A. M. Aytumbetov, *Modeling and optimization features dustproof device helicopter turboprop*, (in Russian). Ufa: USATU, 2014].

3. Гишваров А. С., Салимзянова А. А., Рахимов А. Х. Исследование влияния геометрии вертолетного пылезащитного устройства на его эффективность // Мавлютовские чтения: материалы XI Всероссийский молодежной научной конференции УГАТУ, 2017 т. 7. С. 62–67. [A. S. Gishvarov, A. A. Salimzyanova, A. A. Rakhimov. Investigation of the influence of the geometry of a helicopter dustproof device on its effectiveness // Mavlyutov Readings: Materials of the XI All-Russian Youth Scientific Conference UGATU, 2017, vol. 7. 7. P. 62-67].

ОБ АВТОРАХ

ИСЛАМОВ Рустем Рамилевич, студент каф. авиационных двигателей.

Исследование в области ресурса и надежности авиационных двигателей.

РАХИМОВ Абдусаттор Хасанович асп. каф. авиационных двигателей. Дипл. маг. по авиастр. (УГАТУ, 2017). Исс. в обл. надежности и ресурса авиац. двиг.

САЛИМЗЯНОВА Айгуль Альфировна асп. каф. авиационных двигателей. Дипл. маг. по энер. машин. (УГАТУ, 2014). Исс. в обл. надежности и ресурса ГТД.

ГИШВАРОВ Анас Саидович, проф., зав. каф. авиац. двиг.. Дипл. инж.-мех. по авиац. двиг. (УАИ, 1973). Д-р техн. наук по тепл. двиг. летательных аппаратов (УГАТУ, 1993). Иссл. в обл. надежности, ресурса, испытаний и прогнозирования состояния техн. систем.

METADATA

Title: Study the effectiveness of the dust devices **Authors:** A. A. Salimzyanova ¹, A. A. Knyazev ²,

A. A. Rakhimov³, A. S. Gishvarov.⁴

Affiliation:

Ufa State Aviation Technical University (UGATU), Russia. Email: ¹ nikaxa@inbox.ru, ² slamovrustem@bk.ru,

³ mr.abdusattor@list.ru, ⁴ kafedra.ad@mail.ru

Language: Russian.

- Source: Molodezhnyj Vestnik UGATU (scientific journal of Ufa State Aviation Technical University), no. 2 (21), pp. 118-121, 2019. ISSN 2225-9309 (Print).
- **Abstract:** The study of the effectiveness of the dust devices helicopter gas turbine engines. Based on the numerical simulation of two-component flow assessed the effectiveness of various design options.

About authors:

- GISHVAROV, Anas Saidovich, Prof., Dept. of Aircraft Engines. Dipl. engineer (USATU, 1973). Dr. of Tech. Sci. (USATU, 1993).
- **ISLAMOV, Rustem Ramilevich,** student of the department. aircraft engines. Research in the field of resource and reliability of aircraft engines.
- RAHIMOV, Abdusattor Hasanovich, PhD Stud., Dept. of Aircraft Engines. Accident (USATU, 2017).
- SALIMZYANOVA, Aigul Alfirovna, PhD Stud., Dept. of Aircraft Engines. Power Engineering (USATU, 2014).

Key words: mathematic modeling; helicopter gas turbine engines; dust devices; flow; two-component flow.