О задачах интерполяции голоморфными суммами рядов экспонент

Авторы

  • С.В. Попенов Институт математики с ВЦ УФИЦ РАН

Ключевые слова:

голоморфная функция, интерполяция, сумма ряда экспонент, инвариантное подпространство

Аннотация

Изучаются некоторые постановки задач интерполяции с бесконечным множеством узлов, дискретным в выпуклой области, рядами экспонент с показателями из заданного множества, а также элементами инвариантных относительно дифференцирования подпространств голоморфных функций, в некоторой конкретной области или во всех выпуклых областях и с произвольными дискретными множествами узлов в этих областях. В доказательствах важную роль играет известный эффект принудительного аналитического продолжения функций, используемых для интерполяции. Найдено необходимое и достаточное условие на заданное неограниченное множество показателей, обеспечивающее разрешимость задачи интерполяции элементами инвариантных подпространств, порождаемых системой экспонент с этими показателями во всех выпуклых областях c произвольными дискретными множествами узлов в этих областях. На основе этого критерия доказана возможность сведения к эквивалентным задачам, например, к задаче аппроксимации интерполяционных данных значениями сумм рядов экспонент в узлах интерполяции. Доказано существование сумм рядов экспонент и функций из инвариантных подпространств, обладающих экзотическим поведением как самой функции, так и ее производных вблизи границы выпуклой области

Загрузки

Опубликован

2024-04-24

Выпуск

Раздел

Статьи