System integration of neural network analizers by state diagnosis of engineering net

Authors

  • Yuriy Ivanovich Zozulya
  • Aleksandr Adolfovich Zhilcov
  • Yuriy Stepanovich Kabalnov

Keywords:

Нефтяной промысел ; инженерная сеть ; баланс потоков ; данные реального времени ; причина возникновения дисбаланса потоков ; диагностика состояния ; гипотеза ; потоковая модель ; нейронная сеть ; обратное распространение ошибки ; идентификация ; анализатор ; метаинтеграция

Abstract

A set of the multivariable balance and diagnostic models and software tools are proposed for analyzing the flow balance of engineering net of an oil-mines site. The models are realized in neural networks basis in the form of local neural networks analyzers of realtime data with piecewise linear and quadratic approximation of separable functions. The state diagnosis of the oil-mines site engineering net is fulfilled in the process of multilevel system integration (metaintegration) of local neural networks analyzers by use of checking results of hypotheses about the causes of flow disbalance rise in the nodes of engineering net. A neural network models are generated by use of engineering net graph description stored in the industrial data base of software complex of the oilmines site.

Published

2018-07-09

Issue

Section

INFORMATICS, COMPUTER ENGINEERING AND MANAGEMENT